Case Control Studies

Affiliations.

  • 1 University of Nebraska Medical Center
  • 2 Spectrum Health/Michigan State University College of Human Medicine
  • PMID: 28846237
  • Bookshelf ID: NBK448143

A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes. The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to the case individuals but do not have the outcome of interest. The researcher then looks at historical factors to identify if some exposure(s) is/are found more commonly in the cases than the controls. If the exposure is found more commonly in the cases than in the controls, the researcher can hypothesize that the exposure may be linked to the outcome of interest.

For example, a researcher may want to look at the rare cancer Kaposi's sarcoma. The researcher would find a group of individuals with Kaposi's sarcoma (the cases) and compare them to a group of patients who are similar to the cases in most ways but do not have Kaposi's sarcoma (controls). The researcher could then ask about various exposures to see if any exposure is more common in those with Kaposi's sarcoma (the cases) than those without Kaposi's sarcoma (the controls). The researcher might find that those with Kaposi's sarcoma are more likely to have HIV, and thus conclude that HIV may be a risk factor for the development of Kaposi's sarcoma.

There are many advantages to case-control studies. First, the case-control approach allows for the study of rare diseases. If a disease occurs very infrequently, one would have to follow a large group of people for a long period of time to accrue enough incident cases to study. Such use of resources may be impractical, so a case-control study can be useful for identifying current cases and evaluating historical associated factors. For example, if a disease developed in 1 in 1000 people per year (0.001/year) then in ten years one would expect about 10 cases of a disease to exist in a group of 1000 people. If the disease is much rarer, say 1 in 1,000,0000 per year (0.0000001/year) this would require either having to follow 1,000,0000 people for ten years or 1000 people for 1000 years to accrue ten total cases. As it may be impractical to follow 1,000,000 for ten years or to wait 1000 years for recruitment, a case-control study allows for a more feasible approach.

Second, the case-control study design makes it possible to look at multiple risk factors at once. In the example above about Kaposi's sarcoma, the researcher could ask both the cases and controls about exposures to HIV, asbestos, smoking, lead, sunburns, aniline dye, alcohol, herpes, human papillomavirus, or any number of possible exposures to identify those most likely associated with Kaposi's sarcoma.

Case-control studies can also be very helpful when disease outbreaks occur, and potential links and exposures need to be identified. This study mechanism can be commonly seen in food-related disease outbreaks associated with contaminated products, or when rare diseases start to increase in frequency, as has been seen with measles in recent years.

Because of these advantages, case-control studies are commonly used as one of the first studies to build evidence of an association between exposure and an event or disease.

In a case-control study, the investigator can include unequal numbers of cases with controls such as 2:1 or 4:1 to increase the power of the study.

Disadvantages and Limitations

The most commonly cited disadvantage in case-control studies is the potential for recall bias. Recall bias in a case-control study is the increased likelihood that those with the outcome will recall and report exposures compared to those without the outcome. In other words, even if both groups had exactly the same exposures, the participants in the cases group may report the exposure more often than the controls do. Recall bias may lead to concluding that there are associations between exposure and disease that do not, in fact, exist. It is due to subjects' imperfect memories of past exposures. If people with Kaposi's sarcoma are asked about exposure and history (e.g., HIV, asbestos, smoking, lead, sunburn, aniline dye, alcohol, herpes, human papillomavirus), the individuals with the disease are more likely to think harder about these exposures and recall having some of the exposures that the healthy controls.

Case-control studies, due to their typically retrospective nature, can be used to establish a correlation between exposures and outcomes, but cannot establish causation . These studies simply attempt to find correlations between past events and the current state.

When designing a case-control study, the researcher must find an appropriate control group. Ideally, the case group (those with the outcome) and the control group (those without the outcome) will have almost the same characteristics, such as age, gender, overall health status, and other factors. The two groups should have similar histories and live in similar environments. If, for example, our cases of Kaposi's sarcoma came from across the country but our controls were only chosen from a small community in northern latitudes where people rarely go outside or get sunburns, asking about sunburn may not be a valid exposure to investigate. Similarly, if all of the cases of Kaposi's sarcoma were found to come from a small community outside a battery factory with high levels of lead in the environment, then controls from across the country with minimal lead exposure would not provide an appropriate control group. The investigator must put a great deal of effort into creating a proper control group to bolster the strength of the case-control study as well as enhance their ability to find true and valid potential correlations between exposures and disease states.

Similarly, the researcher must recognize the potential for failing to identify confounding variables or exposures, introducing the possibility of confounding bias, which occurs when a variable that is not being accounted for that has a relationship with both the exposure and outcome. This can cause us to accidentally be studying something we are not accounting for but that may be systematically different between the groups.

Copyright © 2023, StatPearls Publishing LLC.

  • Introduction
  • Issues of Concern
  • Clinical Significance
  • Enhancing Healthcare Team Outcomes
  • Review Questions

Publication types

  • Study Guide

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.

Cover of StatPearls

StatPearls [Internet].

Case control studies.

Steven Tenny ; Connor C. Kerndt ; Mary R. Hoffman .

Affiliations

Last Update: March 27, 2023 .

  • Introduction

A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes. [1]   The case-control study starts with a group of cases, which are the individuals who have the outcome of interest. The researcher then tries to construct a second group of individuals called the controls, who are similar to the case individuals but do not have the outcome of interest. The researcher then looks at historical factors to identify if some exposure(s) is/are found more commonly in the cases than the controls. If the exposure is found more commonly in the cases than in the controls, the researcher can hypothesize that the exposure may be linked to the outcome of interest. 

For example, a researcher may want to look at the rare cancer Kaposi's sarcoma. The researcher would find a group of individuals with Kaposi's sarcoma (the cases) and compare them to a group of patients who are similar to the cases in most ways but do not have Kaposi's sarcoma (controls). The researcher could then ask about various exposures to see if any exposure is more common in those with Kaposi's sarcoma (the cases) than those without Kaposi's sarcoma (the controls). The researcher might find that those with Kaposi's sarcoma are more likely to have HIV, and thus conclude that HIV may be a risk factor for the development of Kaposi's sarcoma.

There are many advantages to case-control studies.  First, the case-control approach allows for the study of rare diseases.   If a disease occurs very infrequently, one would have to follow a large group of people for a long period of time to accrue enough incident cases to study. Such use of resources may be impractical, so a case-control study can be useful for identifying current cases and evaluating historical associated factors.  For example, if a disease developed in 1 in 1000 people per year (0.001/year) then in ten years one would expect about 10 cases of a disease to exist in a group of 1000 people. If the disease is much rarer, say 1 in 1,000,0000 per year (0.0000001/year) this would require either having to follow 1,000,0000 people for ten years or 1000 people for 1000 years to accrue ten total cases. As it may be impractical to follow 1,000,000 for ten years or to wait 1000 years for recruitment, a case-control study allows for a more feasible approach. 

Second, the case-control study design makes it possible to look at multiple risk factors at once. In the example above about Kaposi's sarcoma, the researcher could ask both the cases and controls about exposures to HIV, asbestos, smoking, lead, sunburns, aniline dye, alcohol, herpes, human papillomavirus, or any number of possible exposures to identify those most likely associated with Kaposi's sarcoma.

Case-control studies can also be very helpful when disease outbreaks occur, and potential links and exposures need to be identified.  This study mechanism can be commonly seen in food-related disease outbreaks associated with contaminated products, or when rare diseases start to increase in frequency, as has been seen with measles in recent years.

Because of these advantages, case-control studies are commonly used as one of the first studies to build evidence of an association between exposure and an event or disease.

In a case-control study, the investigator can include unequal numbers of cases with controls such as 2:1 or 4:1 to increase the power of the study.

Disadvantages and Limitations

The most commonly cited disadvantage in case-control studies is the potential for recall bias. [2]   Recall bias in a case-control study is the increased likelihood that those with the outcome will recall and report exposures compared to those without the outcome.  In other words, even if both groups had exactly the same exposures, the participants in the cases group may report the exposure more often than the controls do.  Recall bias may lead to concluding that there are associations between exposure and disease that do not, in fact, exist. It is due to subjects' imperfect memories of past exposures.  If people with Kaposi's sarcoma are asked about exposure and history (e.g., HIV, asbestos, smoking, lead, sunburn, aniline dye, alcohol, herpes, human papillomavirus), the individuals with the disease are more likely to think harder about these exposures and recall having some of the exposures that the healthy controls.

Case-control studies, due to their typically retrospective nature, can be used to establish a correlation  between exposures and outcomes, but cannot establish causation . These studies simply attempt to find correlations between past events and the current state. 

When designing a case-control study, the researcher must find an appropriate control group. Ideally, the case group (those with the outcome) and the control group (those without the outcome) will have almost the same characteristics, such as age, gender, overall health status, and other factors. The two groups should have similar histories and live in similar environments. If, for example, our cases of Kaposi's sarcoma came from across the country but our controls were only chosen from a small community in northern latitudes where people rarely go outside or get sunburns, asking about sunburn may not be a valid exposure to investigate.  Similarly, if all of the cases of Kaposi's sarcoma were found to come from a small community outside a battery factory with high levels of lead in the environment, then controls from across the country with minimal lead exposure would not provide an appropriate control group.  The investigator must put a great deal of effort into creating a proper control group to bolster the strength of the case-control study as well as enhance their ability to find true and valid potential correlations between exposures and disease states.

Similarly, the researcher must recognize the potential for failing to identify confounding variables or exposures, introducing the possibility of confounding bias, which occurs when a variable that is not being accounted for that has a relationship with both the exposure and outcome.  This can cause us to accidentally be studying something we are not accounting for but that may be systematically different between the groups. 

The major method for analyzing results in case-control studies is the odds ratio (OR). The odds ratio is the odds of having a disease (or outcome) with the exposure versus the odds of having the disease without the exposure. The most straightforward way to calculate the odds ratio is with a 2 by 2 table divided by exposure and disease status (see below). Mathematically we can write the odds ratio as follows.

Odds ratio = [(Number exposed with disease)/(Number exposed without disease) ]/[(Number not exposed to disease)/(Number not exposed without disease) ]

This can be rewritten as:

Odds ratio = [ (Number exposed with disease) x (Number not exposed without disease) ] / [ (Number exposed without disease ) x (Number not exposed with disease) ] 

The odds ratio tells us how strongly the exposure is related to the disease state. An odds ratio of greater than one implies the disease is more likely with exposure. An odds ratio of less than one implies the disease is less likely with exposure and thus the exposure may be protective.  For example, a patient with a prior heart attack taking a daily aspirin has a decreased odds of having another heart attack (odds ratio less than one). An odds ratio of one implies there is no relation between the exposure and the disease process.

Odds ratios are often confused with Relative Risk (RR), which is a measure of the probability of the disease or outcome in the exposed vs unexposed groups.  For very rare conditions, the OR and RR may be very similar, but they are measuring different aspects of the association between outcome and exposure.  The OR is used in case-control studies because RR cannot be estimated; whereas in randomized clinical trials, a direct measurement of the development of events in the exposed and unexposed groups can be seen. RR is also used to compare risk in other prospective study designs.

  • Issues of Concern

The main issues of concern with a case-control study are recall bias, its retrospective nature, the need for a careful collection of measured variables, and the selection of an appropriate control group. [3]  These are discussed above in the disadvantages section.

  • Clinical Significance

A case-control study is a good tool for exploring risk factors for rare diseases or when other study types are not feasible.  Many times an investigator will hypothesize a list of possible risk factors for a disease process and will then use a case-control study to see if there are any possible associations between the risk factors and the disease process. The investigator can then use the data from the case-control study to focus on a few of the most likely causative factors and develop additional hypotheses or questions.  Then through further exploration, often using other study types (such as cohort studies or randomized clinical studies) the researcher may be able to develop further support for the evidence of the possible association between the exposure and the outcome.

  • Enhancing Healthcare Team Outcomes

Case-control studies are prevalent in all fields of medicine from nursing and pharmacy to use in public health and surgical patients.  Case-control studies are important for each member of the health care team to not only understand their common occurrence in research but because each part of the health care team has parts to contribute to such studies.  One of the most important things each party provides is helping identify correct controls for the cases.  Matching the controls across a spectrum of factors outside of the elements of interest take input from nurses, pharmacists, social workers, physicians, demographers, and more.  Failure for adequate selection of controls can lead to invalid study conclusions and invalidate the entire study.

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

2x2 table with calculations for the odds ratio and 95% confidence interval for the odds ratio. Contributed by Steven Tenny MD, MPH, MBA

Disclosure: Steven Tenny declares no relevant financial relationships with ineligible companies.

Disclosure: Connor Kerndt declares no relevant financial relationships with ineligible companies.

Disclosure: Mary Hoffman declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Tenny S, Kerndt CC, Hoffman MR. Case Control Studies. [Updated 2023 Mar 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Qualitative Study. [StatPearls. 2023] Qualitative Study. Tenny S, Brannan JM, Brannan GD. StatPearls. 2023 Jan
  • Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. [Cochrane Database Syst Rev. 2022] Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, et al. Cochrane Database Syst Rev. 2022 Feb 1; 2(2022). Epub 2022 Feb 1.
  • Epidemiology Of Study Design. [StatPearls. 2023] Epidemiology Of Study Design. Munnangi S, Boktor SW. StatPearls. 2023 Jan
  • Review The epidemiology of classic, African, and immunosuppressed Kaposi's sarcoma. [Epidemiol Rev. 1991] Review The epidemiology of classic, African, and immunosuppressed Kaposi's sarcoma. Wahman A, Melnick SL, Rhame FS, Potter JD. Epidemiol Rev. 1991; 13:178-99.
  • Review Epidemiology of Kaposi's sarcoma. [Cancer Surv. 1991] Review Epidemiology of Kaposi's sarcoma. Beral V. Cancer Surv. 1991; 10:5-22.

Recent Activity

  • Case Control Studies - StatPearls Case Control Studies - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case-Control Study? | Definition & Examples

What Is a Case-Control Study? | Definition & Examples

Published on February 4, 2023 by Tegan George . Revised on June 22, 2023.

A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the “case,” and those without it are the “control.”

It’s important to remember that the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

Table of contents

When to use a case-control study, examples of case-control studies, advantages and disadvantages of case-control studies, other interesting articles, frequently asked questions.

Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative , and they often are in healthcare settings. Case-control studies can be used for both exploratory and explanatory research , and they are a good choice for studying research topics like disease exposure and health outcomes.

A case-control study may be a good fit for your research if it meets the following criteria.

  • Data on exposure (e.g., to a chemical or a pesticide) are difficult to obtain or expensive.
  • The disease associated with the exposure you’re studying has a long incubation period or is rare or under-studied (e.g., AIDS in the early 1980s).
  • The population you are studying is difficult to contact for follow-up questions (e.g., asylum seekers).

Retrospective cohort studies use existing secondary research data, such as medical records or databases, to identify a group of people with a common exposure or risk factor and to observe their outcomes over time. Case-control studies conduct primary research , comparing a group of participants possessing a condition of interest to a very similar group lacking that condition in real time.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Case-control studies are common in fields like epidemiology, healthcare, and psychology.

You would then collect data on your participants’ exposure to contaminated drinking water, focusing on variables such as the source of said water and the duration of exposure, for both groups. You could then compare the two to determine if there is a relationship between drinking water contamination and the risk of developing a gastrointestinal illness. Example: Healthcare case-control study You are interested in the relationship between the dietary intake of a particular vitamin (e.g., vitamin D) and the risk of developing osteoporosis later in life. Here, the case group would be individuals who have been diagnosed with osteoporosis, while the control group would be individuals without osteoporosis.

You would then collect information on dietary intake of vitamin D for both the cases and controls and compare the two groups to determine if there is a relationship between vitamin D intake and the risk of developing osteoporosis. Example: Psychology case-control study You are studying the relationship between early-childhood stress and the likelihood of later developing post-traumatic stress disorder (PTSD). Here, the case group would be individuals who have been diagnosed with PTSD, while the control group would be individuals without PTSD.

Case-control studies are a solid research method choice, but they come with distinct advantages and disadvantages.

Advantages of case-control studies

  • Case-control studies are a great choice if you have any ethical considerations about your participants that could preclude you from using a traditional experimental design .
  • Case-control studies are time efficient and fairly inexpensive to conduct because they require fewer subjects than other research methods .
  • If there were multiple exposures leading to a single outcome, case-control studies can incorporate that. As such, they truly shine when used to study rare outcomes or outbreaks of a particular disease .

Disadvantages of case-control studies

  • Case-control studies, similarly to observational studies, run a high risk of research biases . They are particularly susceptible to observer bias , recall bias , and interviewer bias.
  • In the case of very rare exposures of the outcome studied, attempting to conduct a case-control study can be very time consuming and inefficient .
  • Case-control studies in general have low internal validity  and are not always credible.

Case-control studies by design focus on one singular outcome. This makes them very rigid and not generalizable , as no extrapolation can be made about other outcomes like risk recurrence or future exposure threat. This leads to less satisfying results than other methodological choices.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A faster, more affordable way to improve your paper

Scribbr’s new AI Proofreader checks your document and corrects spelling, grammar, and punctuation mistakes with near-human accuracy and the efficiency of AI!

case control study groups

Proofread my paper

A case-control study differs from a cohort study because cohort studies are more longitudinal in nature and do not necessarily require a control group .

While one may be added if the investigator so chooses, members of the cohort are primarily selected because of a shared characteristic among them. In particular, retrospective cohort studies are designed to follow a group of people with a common exposure or risk factor over time and observe their outcomes.

Case-control studies, in contrast, require both a case group and a control group, as suggested by their name, and usually are used to identify risk factors for a disease by comparing cases and controls.

A case-control study differs from a cross-sectional study because case-control studies are naturally retrospective in nature, looking backward in time to identify exposures that may have occurred before the development of the disease.

On the other hand, cross-sectional studies collect data on a population at a single point in time. The goal here is to describe the characteristics of the population, such as their age, gender identity, or health status, and understand the distribution and relationships of these characteristics.

Cases and controls are selected for a case-control study based on their inherent characteristics. Participants already possessing the condition of interest form the “case,” while those without form the “control.”

Keep in mind that by definition the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

The strength of the association between an exposure and a disease in a case-control study can be measured using a few different statistical measures , such as odds ratios (ORs) and relative risk (RR).

No, case-control studies cannot establish causality as a standalone measure.

As observational studies , they can suggest associations between an exposure and a disease, but they cannot prove without a doubt that the exposure causes the disease. In particular, issues arising from timing, research biases like recall bias , and the selection of variables lead to low internal validity and the inability to determine causality.

Sources in this article

We strongly encourage students to use sources in their work. You can cite our article (APA Style) or take a deep dive into the articles below.

George, T. (2023, June 22). What Is a Case-Control Study? | Definition & Examples. Scribbr. Retrieved November 30, 2023, from https://www.scribbr.com/methodology/case-control-study/
Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis (Monographs in Epidemiology and Biostatistics, 2) (Illustrated). Oxford University Press.

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is an observational study | guide & examples, control groups and treatment groups | uses & examples, cross-sectional study | definition, uses & examples, what is your plagiarism score.

Study Design 101: Case Control Study

  • Case Report
  • Case Control Study
  • Cohort Study
  • Randomized Controlled Trial
  • Practice Guideline
  • Systematic Review
  • Meta-Analysis
  • Helpful Formulas
  • Finding Specific Study Types

A study that compares patients who have a disease or outcome of interest (cases) with patients who do not have the disease or outcome (controls), and looks back retrospectively to compare how frequently the exposure to a risk factor is present in each group to determine the relationship between the risk factor and the disease.

Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal is to retrospectively determine the exposure to the risk factor of interest from each of the two groups of individuals: cases and controls. These studies are designed to estimate odds.

Case control studies are also known as "retrospective studies" and "case-referent studies."

  • Good for studying rare conditions or diseases
  • Less time needed to conduct the study because the condition or disease has already occurred
  • Lets you simultaneously look at multiple risk factors
  • Useful as initial studies to establish an association
  • Can answer questions that could not be answered through other study designs

Disadvantages

  • Retrospective studies have more problems with data quality because they rely on memory and people with a condition will be more motivated to recall risk factors (also called recall bias).
  • Not good for evaluating diagnostic tests because it's already clear that the cases have the condition and the controls do not
  • It can be difficult to find a suitable control group

Design pitfalls to look out for

Care should be taken to avoid confounding, which arises when an exposure and an outcome are both strongly associated with a third variable. Controls should be subjects who might have been cases in the study but are selected independent of the exposure. Cases and controls should also not be "over-matched."

Is the control group appropriate for the population? Does the study use matching or pairing appropriately to avoid the effects of a confounding variable? Does it use appropriate inclusion and exclusion criteria?

Fictitious Example

There is a suspicion that zinc oxide, the white non-absorbent sunscreen traditionally worn by lifeguards is more effective at preventing sunburns that lead to skin cancer than absorbent sunscreen lotions. A case-control study was conducted to investigate if exposure to zinc oxide is a more effective skin cancer prevention measure. The study involved comparing a group of former lifeguards that had developed cancer on their cheeks and noses (cases) to a group of lifeguards without this type of cancer (controls) and assess their prior exposure to zinc oxide or absorbent sunscreen lotions.

This study would be retrospective in that the former lifeguards would be asked to recall which type of sunscreen they used on their face and approximately how often. This could be either a matched or unmatched study, but efforts would need to be made to ensure that the former lifeguards are of the same average age, and lifeguarded for a similar number of seasons and amount of time per season.

Real-life Examples

Boubekri, M., Cheung, I., Reid, K., Wang, C., & Zee, P. (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep Medicine, 10 (6), 603-611. https://doi.org/10.5664/jcsm.3780

This pilot study explored the impact of exposure to daylight on the health of office workers (measuring well-being and sleep quality subjectively, and light exposure, activity level and sleep-wake patterns via actigraphy). Individuals with windows in their workplaces had more light exposure, longer sleep duration, and more physical activity. They also reported a better scores in the areas of vitality and role limitations due to physical problems, better sleep quality and less sleep disturbances.

Togha, M., Razeghi Jahromi, S., Ghorbani, Z., Martami, F., & Seifishahpar, M. (2018). Serum Vitamin D Status in a Group of Migraine Patients Compared With Healthy Controls: A Case-Control Study. Headache, 58 (10), 1530-1540. https://doi.org/10.1111/head.13423

This case-control study compared serum vitamin D levels in individuals who experience migraine headaches with their matched controls. Studied over a period of thirty days, individuals with higher levels of serum Vitamin D was associated with lower odds of migraine headache.

Related Formulas

  • Odds ratio in an unmatched study
  • Odds ratio in a matched study

Related Terms

A patient with the disease or outcome of interest.

Confounding

When an exposure and an outcome are both strongly associated with a third variable.

A patient who does not have the disease or outcome.

Matched Design

Each case is matched individually with a control according to certain characteristics such as age and gender. It is important to remember that the concordant pairs (pairs in which the case and control are either both exposed or both not exposed) tell us nothing about the risk of exposure separately for cases or controls.

Observed Assignment

The method of assignment of individuals to study and control groups in observational studies when the investigator does not intervene to perform the assignment.

Unmatched Design

The controls are a sample from a suitable non-affected population.

Now test yourself!

1. Case Control Studies are prospective in that they follow the cases and controls over time and observe what occurs.

a) True b) False

2. Which of the following is an advantage of Case Control Studies?

a) They can simultaneously look at multiple risk factors. b) They are useful to initially establish an association between a risk factor and a disease or outcome. c) They take less time to complete because the condition or disease has already occurred. d) b and c only e) a, b, and c

Evidence Pyramid - Navigation

  • Meta- Analysis
  • Case Reports
  • << Previous: Case Report
  • Next: Cohort Study >>

Creative Commons License

  • Last Updated: Sep 25, 2023 10:59 AM
  • URL: https://guides.himmelfarb.gwu.edu/studydesign101

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2850
  • [email protected]
  • https://himmelfarb.gwu.edu
  • Chapter 8. Case-control and cross sectional studies

Case-control studies

Selection of cases, selection of controls, ascertainment of exposure, cross sectional studies.

  • Chapter 1. What is epidemiology?
  • Chapter 2. Quantifying disease in populations
  • Chapter 3. Comparing disease rates
  • Chapter 4. Measurement error and bias
  • Chapter 5. Planning and conducting a survey
  • Chapter 6. Ecological studies
  • Chapter 7. Longitudinal studies
  • Chapter 9. Experimental studies
  • Chapter 10. Screening
  • Chapter 11. Outbreaks of disease
  • Chapter 12. Reading epidemiological reports
  • Chapter 13. Further reading

Follow us on

Content links.

  • Collections
  • Health in South Asia
  • Women’s, children’s & adolescents’ health
  • News and views
  • BMJ Opinion
  • Rapid responses
  • Editorial staff
  • BMJ in the USA
  • BMJ in South Asia
  • Submit your paper
  • BMA members
  • Subscribers
  • Advertisers and sponsors

Explore BMJ

  • Our company
  • BMJ Careers
  • BMJ Learning
  • BMJ Masterclasses
  • BMJ Journals
  • BMJ Student
  • Academic edition of The BMJ
  • BMJ Best Practice
  • The BMJ Awards
  • Email alerts
  • Activate subscription

Information

Quantitative study designs: Case Control

Quantitative study designs.

  • Introduction
  • Cohort Studies
  • Randomised Controlled Trial

Case Control

  • Cross-Sectional Studies
  • Study Designs Home

In a Case-Control study there are two groups of people: one has a health issue (Case group), and this group is “matched” to a Control group without the health issue based on characteristics like age, gender, occupation. In this study type, we can look back in the patient’s histories to look for exposure to risk factors that are common to the Case group, but not the Control group. It was a case-control study that demonstrated a link between carcinoma of the lung and smoking tobacco . These studies estimate the odds between the exposure and the health outcome, however they cannot prove causality. Case-Control studies might also be referred to as retrospective or case-referent studies. 

Stages of a Case-Control study

This diagram represents taking both the case (disease) and the control (no disease) groups and looking back at their histories to determine their exposure to possible contributing factors.  The researchers then determine the likelihood of those factors contributing to the disease.

case control study groups

(FOR ACCESSIBILITY: A case control study is likely to show that most, but not all exposed people end up with the health issue, and some unexposed people may also develop the health issue)

Which Clinical Questions does Case-Control best answer?

Case-Control studies are best used for Prognosis questions.

For example: Do anticholinergic drugs increase the risk of dementia in later life? (See BMJ Case-Control study Anticholinergic drugs and risk of dementia: case-control study )

What are the advantages and disadvantages to consider when using Case-Control?

* Confounding occurs when the elements of the study design invalidate the result. It is usually unintentional. It is important to avoid confounding, which can happen in a few ways within Case-Control studies. This explains why it is lower in the hierarchy of evidence, superior only to Case Studies.

What does a strong Case-Control study look like?

A strong study will have:

  • Well-matched controls, similar background without being so similar that they are likely to end up with the same health issue (this can be easier said than done since the risk factors are unknown). 
  • Detailed medical histories are available, reducing the emphasis on a patient’s unreliable recall of their potential exposures. 

What are the pitfalls to look for?

  • Poorly matched or over-matched controls.  Poorly matched means that not enough factors are similar between the Case and Control. E.g. age, gender, geography. Over-matched conversely means that so many things match (age, occupation, geography, health habits) that in all likelihood the Control group will also end up with the same health issue! Either of these situations could cause the study to become ineffective. 
  • Selection bias: Selection of Controls is biased. E.g. All Controls are in the hospital, so they’re likely already sick, they’re not a true sample of the wider population. 
  • Cases include persons showing early symptoms who never ended up having the illness. 

Critical appraisal tools 

To assist with critically appraising case control studies there are some tools / checklists you can use.

CASP - Case Control Checklist

JBI – Critical appraisal checklist for case control studies

CEBMA – Centre for Evidence Based Management  – Critical appraisal questions (focus on leadership and management)

STROBE - Observational Studies checklists includes Case control

SIGN - Case-Control Studies Checklist

NCCEH - Critical Appraisal of a Case Control Study for environmental health

Real World Examples

Smoking and carcinoma of the lung; preliminary report

  • Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung; preliminary report.  British Medical Journal ,  2 (4682), 739–748. Retrieved from  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038856/
  • Key Case-Control study linking tobacco smoking with lung cancer
  • Notes a marked increase in incidence of Lung Cancer disproportionate to population growth.
  • 20 London Hospitals contributed current Cases of lung, stomach, colon and rectum cancer via admissions, house-physician and radiotherapy diagnosis, non-cancer Controls were selected at each hospital of the same-sex and within 5 year age group of each.
  • 1732 Cases and 743 Controls were interviewed for social class, gender, age, exposure to urban pollution, occupation and smoking habits.
  • It was found that continued smoking from a younger age and smoking a greater number of cigarettes correlated with incidence of lung cancer.

Anticholinergic drugs and risk of dementia: case-control study

  • Richardson, K., Fox, C., Maidment, I., Steel, N., Loke, Y. K., Arthur, A., . . . Savva, G. M. (2018). Anticholinergic drugs and risk of dementia: case-control study. BMJ , 361, k1315. Retrieved from  http://www.bmj.com/content/361/bmj.k1315.abstract .
  • A recent study linking the duration and level of exposure to Anticholinergic drugs and subsequent onset of dementia.
  • Anticholinergic Cognitive Burden (ACB) was estimated in various drugs, the higher the exposure (measured as the ACB score) the greater likeliness of onset of dementia later in life.
  • Antidepressant, urological, and antiparkinson drugs with an ACB score of 3 increased the risk of dementia. Gastrointestinal drugs with an ACB score of 3 were not strongly linked with onset of dementia.
  • Tricyclic antidepressants such as Amitriptyline have an ACB score of 3 and are an example of a common area of concern.

Omega-3 deficiency associated with perinatal depression: Case-Control study 

  • Rees, A.-M., Austin, M.-P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Research , 166(2), 254-259. Retrieved from  http://www.sciencedirect.com/science/article/pii/S0165178107004398 .
  • During pregnancy women lose Omega-3 polyunsaturated fatty acids to the developing foetus.
  • There is a known link between Omgea-3 depletion and depression
  • Sixteen depressed and 22 non-depressed women were recruited during their third trimester
  • High levels of Omega-3 were associated with significantly lower levels of depression.
  • Women with low levels of Omega-3 were six times more likely to be depressed during pregnancy.

References and Further Reading

Doll, R., & Hill, A. B. (1950). Smoking and carcinoma of the lung; preliminary report. British Medical Journal, 2(4682), 739–748. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2038856/

Greenhalgh, Trisha. How to Read a Paper: the Basics of Evidence-Based Medicine, John Wiley & Sons, Incorporated, 2014. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/deakin/detail.action?docID=1642418 .

Himmelfarb Health Sciences Library. (2019). Study Design 101: Case-Control Study. Retrieved from https://himmelfarb.gwu.edu/tutorials/studydesign101/casecontrols.cfm   

Hoffmann, T., Bennett, S., & Del Mar, C. (2017). Evidence-Based Practice Across the Health Professions (Third edition. ed.): Elsevier. 

Lewallen, S., & Courtright, P. (1998). Epidemiology in practice: case-control studies. Community Eye Health, 11(28), 57.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706071/  

Pelham, B. W. a., & Blanton, H. (2013). Conducting research in psychology : measuring the weight of smoke /Brett W. Pelham, Hart Blanton (Fourth edition. ed.): Wadsworth Cengage Learning. 

Rees, A.-M., Austin, M.-P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: Case control study. Psychiatry Research, 166(2), 254-259. Retrieved from http://www.sciencedirect.com/science/article/pii/S0165178107004398

Richardson, K., Fox, C., Maidment, I., Steel, N., Loke, Y. K., Arthur, A., … Savva, G. M. (2018). Anticholinergic drugs and risk of dementia: case-control study. BMJ, 361, k1315. Retrieved from http://www.bmj.com/content/361/bmj.k1315.abstract

Statistics How To. (2019). Case-Control Study: Definition, Real Life Examples. Retrieved from https://www.statisticshowto.com/case-control-study/  

  • << Previous: Randomised Controlled Trial
  • Next: Cross-Sectional Studies >>
  • Last Updated: Aug 21, 2023 10:12 AM
  • URL: https://deakin.libguides.com/quantitative-study-designs

     

  • Ask Dr Cath
  • How to work in public health
  • Tips for getting public health jobs
  • How to become a Public Health Consultant
  • Being a Consultant in Public Health
  • Securing the consultant interview
  • Public Health Registrars
  • Public Health Estate Agent
  • FPH Diplomate Exam
  • FPH Membership Exam
  • GP Trainees
  • Public Health
  • Child Public Health
  • Health Protection
  • Health Promotion
  • Medical Sociology
  • Population Health
  • Social Medicine
  • Instaskills
  • Caldicott Guardian
  • Commissioning Public Health Services
  • Effective Manager
  • Effective Leader
  • Implementing Best Practice
  • Infographics
  • Outbreak management
  • Press Releases
  • Time Management
  • Strategic Planning and Management
  • Understanding Statistics
  • More Statistical Understanding
  • Action Research
  • Case Control
  • Delphi Methods
  • Descriptive Studies
  • Document Analysis
  • Economic Appraisal
  • Focus Groups
  • Health Acorn
  • Health Equity Audit
  • Health Impact Assessment
  • Health Needs Asessment
  • Health Status Assessment
  • Intervention Studies
  • Observational Studies
  • Official statistics
  • Quality of Life
  • Respondent Driven Sampling
  • Social Marketing Research
  • Systematic Reviews
  • Secondary Statisitical Analysis
  • In Dr Cath's Shoes

Case Control Studies

case control study groups

Pearce N.  Classification of Epidemiological Studies .Int J Epidemiol (2012) 41 (2): 393-397.  (This article talks about there really only being 4 types of epidemiological studies: incidence studies, prevalance studies, incidence case-control studies and prevalance case control studies.  The differences being the outcome and whether or not you sample on outcome).

Case-Control Studies

case control study groups

Introduction

Cohort studies have an intuitive logic to them, but they can be very problematic when one is investigating outcomes that only occur in a small fraction of exposed and unexposed individuals. They can also be problematic when it is expensive or very difficult to obtain exposure information from a cohort. In these situations a case-control design offers an alternative that is much more efficient. The goal of a case-control study is the same as that of cohort studies, i.e., to estimate the magnitude of association between an exposure and an outcome. However, case-control studies employ a different sampling strategy that gives them greater efficiency.

Learning Objectives

After completing this module, the student will be able to:

  • Define and explain the distinguishing features of a case-control study
  • Describe  and identify the types of epidemiologic questions that can be addressed by case-control studies
  • Define what is meant by the term "source population"
  • Describe the purpose of controls in a case-control study
  • Describe differences between hospital-based and population-based case-control studies
  • Describe the principles of valid control selection
  • Explain the importance of using specific diagnostic criteria and explicit case definitions in case-control studies
  • Estimate and interpret the odds ratio from a case-control study
  • Identify the potential strengths and limitations of case-control studies

Overview of Case-Control Design

In the module entitled Overview of Analytic Studies it was noted that Rothman describes the case-control strategy as follows:

"Case-control studies are best understood by considering as the starting point a source population , which represents a hypothetical study population in which a cohort study might have been conducted. The source population is the population that gives rise to the cases included in the study. If a cohort study were undertaken, we would define the exposed and unexposed cohorts (or several cohorts) and from these populations obtain denominators for the incidence rates or risks that would be calculated for each cohort. We would then identify the number of cases occurring in each cohort and calculate the risk or incidence rate for each. In a case-control study the same cases are identified and classified as to whether they belong to the exposed or unexposed cohort. Instead of obtaining the denominators for the rates or risks, however, a control group is sampled from the entire source population that gives rise to the cases. Individuals in the control group are then classified into exposed and unexposed categories. The purpose of the control group is to determine the relative size of the exposed and unexposed components of the source population. Because the control group is used to estimate the distribution of exposure in the source population, the cardinal requirement of control selection is that the controls be sampled independently of exposure status."

To illustrate this consider the following hypothetical scenario in which the source population is the state of Massachusetts. Diseased individuals are red, and non-diseased individuals are blue. Exposed individuals are indicated by a whitish midsection. Note the following aspects of the depicted scenario:

  • The disease is rare.
  • There is a fairly large number of exposed individuals in the state, but most of these are not diseased.

Map of Massachusetts with thousands of icon people overlaid. A very small percentage of them are identified as having a rare disease.

If we somehow had exposure and outcome information on all of the subjects in the source population and looked at the association using a cohort design, we might find the data summarized in the contingency table below.

In this hypothetical example, we have data on all 6,000,000 people in the source population, and we could compute the probability of disease (i.e., the risk or incidence) in both the exposed group and the non-exposed group, because we have the denominators for both the exposed and non-exposed groups.

The table above summarizes all of the necessary information regarding exposure and outcome status for the population and enables us to compute a risk ratio as a measure of the strength of the association. Intuitively, we compute the probability of disease (the risk) in each exposure group and then compute the risk ratio as follows:

The problem , of course, is that we usually don't have the resources to get the data on all subjects in the population. If we took a random sample of even 5-10% of the population, we would have few diseased people in our sample, certainly not enough to produce a reasonably precise measure of association. Moreover, we would expend an inordinate amount of effort and money collecting exposure and outcome data on a large number of people who would not develop the outcome.

We need a method that allows us to retain all the people in the numerator of disease frequency (diseased people or "cases") but allows us to collect information from only a small proportion of the people that make up the denominator (population, or "controls"), most of whom do not have the disease of interest. The case-control design allows us to accomplish this. We identify and collect exposure information on all the cases, but identify and collect exposure information on only a sample of the population. Once we have the exposure information, we can assign subjects to the numerator and denominator of the exposed and unexposed groups. This is what Rothman means when he says,

"The purpose of the control group is to determine the relative size of the exposed and unexposed components of the source population."

In the above example, we would have identified all 1,300 cases, determined their exposure status, and ended up categorizing 700 as exposed and 600 as unexposed. We might have ransomly sampled 6,000 members of the population (instead of 6 million) in order to determine the exposure distribution in the total population. If our sampling method was random, we would expect that about 1,000 would be exposed and 5,000 unexposed (the same ratio as in the overall population). We calculate a similar measure as the risk ratio above, but substituting in the denominator a sample of the population ("controls") instead of the whole population:

Note that when we take a sample of the population, we no longer have a measure of disease frequency, because the denominator no longer represents the population. Therefore, we can no longer compute the probability or rate of disease incidence in each exposure group. We also can't calculate a risk or rate difference measure for the same reason. However, as we have seen, we can compute the relative probability of disease in the exposed vs. unexposed group. The term generally used for this measure is an odds ratio , described in more detail later in the module.

Consequently, when the outcome is uncommon, as in this case, the risk ratio can be estimated much more efficiently by using a case-control design. One would focus first on finding an adequate number of cases in order to determine the ratio of exposed to unexposed cases. Then, one only needs to take a sample of the population in order to estimate the relative size of the exposed and unexposed components of the source population. Note that if one can identify all of the cases that were reported to a registry or other database within a defined period of time, then it is possible to compute an estimate of the incidence of disease if the size of the population is known from census data.   While this is conceptually possible, it is rarely done, and we will not discuss it further in this course.

Toggle open/close quiz question

A Nested Case-Control Study

Suppose a prospective cohort study were conducted among almost 90,000 women for the purpose of studying the determinants of cancer and cardiovascular disease. After enrollment, the women provide baseline information on a host of exposures, and they also provide baseline blood and urine samples that are frozen for possible future use. The women are then followed, and, after about eight years, the investigators want to test the hypothesis that past exposure to pesticides such as DDT is a risk factor for breast cancer. Eight years have passed since the beginning of the study, and 1.439 women in the cohort have developed breast cancer. Since they froze blood samples at baseline, they have the option of analyzing all of the blood samples in order to ascertain exposure to DDT at the beginning of the study before any cancers occurred. The problem is that there are almost 90,000 women and it would cost $20 to analyze each of the blood samples. If the investigators could have analyzed all 90,000 samples this is what they would have found the results in the table below.

Table of Breast Cancer Occurrence Among Women With or Without DDT Exposure

If they had been able to afford analyzing all of the baseline blood specimens in order to categorize the women as having had DDT exposure or not, they would have found a risk ratio = 1.87 (95% confidence interval: 1.66-2.10). The problem is that this would have cost almost $1.8 million, and the investigators did not have the funding to do this.

While 1,439 breast cancers is a disturbing number, it is only 1.6% of the entire cohort, so the outcome is relatively rare, and it is costing a lot of money to analyze the blood specimens obtained from all of the non-diseased women. There is, however, another more efficient alternative, i.e., to use a case-control sampling strategy. One could analyze all of the blood samples from women who had developed breast cancer, but only a sample of the whole cohort in order to estimate the exposure distribution in the population that produced the cases.

If one were to analyze the blood samples of 2,878 of the non-diseased women (twice as many as the number of cases), one would obtain results that would look something like those in the next table.

Odds of Exposure: 360/1079 in the cases versus 432/2,446 in the non-diseased controls.

Totals Samples analyzed = 1,438+2,878 = 4,316

Total Cost = 4,316 x $20 = $86,320

With this approach a similar estimate of risk was obtained after analyzing blood samples from only a small sample of the entire population at a fraction of the cost with hardly any loss in precision. In essence, a case-control strategy was used, but it was conducted within the context of a prospective cohort study. This is referred to as a case-control study "nested" within a cohort study.

Rothman states that one should look upon all case-control studies as being "nested" within a cohort. In other words the cohort represents the source population that gave rise to the cases. With a case-control sampling strategy one simply takes a sample of the population in order to obtain an estimate of the exposure distribution within the population that gave rise to the cases. Obviously, this is a much more efficient design.

It is important to note that, unlike cohort studies, case-control studies do not follow subjects through time. Cases are enrolled at the time they develop disease and controls are enrolled at the same time. The exposure status of each is determined, but they are not followed into the future for further development of disease.

As with cohort studies, case-control studies can be prospective or retrospective. At the start of the study, all cases might have already occurred and then this would be a retrospective case-control study. Alternatively, none of the cases might have already occurred, and new cases will be enrolled prospectively. Epidemiologists generally prefer the prospective approach because it has fewer biases, but it is more expensive and sometimes not possible. When conducted prospectively, or when nested in a prospective cohort study, it is straightforward to select controls from the population at risk. However, in retrospective case-control studies, it can be difficult to select from the population at risk, and controls are then selected from those in the population who didn't develop disease. Using only the non-diseased to select controls as opposed to the whole population means the denominator is not really a measure of disease frequency, but when the disease is rare , the odds ratio using the non-diseased will be very similar to the estimate obtained when the entire population is used to sample for controls. This phenomenon is known as the r are-disease assumption . When case-control studies were first developed, most were conducted retrospectively, and it is sometimes assumed that the rare-disease assumption applies to all case-control studies. However, it actually only applies to those case-control studies in which controls are sampled only from the non-diseased rather than the whole population.  

The difference between sampling from the whole population and only the non-diseased is that the whole population contains people both with and without the disease of interest. This means that a sampling strategy that uses the whole population as its source must allow for the fact that people who develop the disease of interest can be selected as controls. Students often have a difficult time with this concept. It is helpful to remember that it seems natural that the population denominator includes people who develop the disease in a cohort study. If a case-control study is a more efficient way to obtain the information from a cohort study, then perhaps it is not so strange that the denominator in a case-control study also can include people who develop the disease. This topic is covered in more detail in EP813 Intermediate Epidemiology.

Retrospective and Prospective Case-Control Studies

Students usually think of case-control studies as being only retrospective, since the investigators enroll subjects who have developed the outcome of interest. However, case-control studies, like cohort studies, can be either retrospective or prospective. In a prospective case-control study, the investigator still enrolls based on outcome status, but the investigator must wait to the cases to occur.

When is a Case-Control Study Desirable?

Given the greater efficiency of case-control studies, they are particularly advantageous in the following situations:

  • When the disease or outcome being studied is rare.
  • When the disease or outcome has a long induction and latent period (i.e., a long time between exposure and the eventual causal manifestation of disease).
  • When exposure data is difficult or expensive to obtain.
  • When the study population is dynamic.
  • When little is known about the risk factors for the disease, case-control studies provide a way of testing associations with multiple potential risk factors. (This isn't really a unique advantage to case-control studies, however, since cohort studies can also assess multiple exposures.)

Another advantage of their greater efficiency, of course, is that they are less time-consuming and much less costly than prospective cohort studies.

The DES Case-Control Study

A classic example of the efficiency of the case-control approach is the study (Herbst et al.: N. Engl. J. Med. Herbst et al. (1971;284:878-81) that linked in-utero exposure to diethylstilbesterol (DES) with subsequent development of vaginal cancer 15-22 years later. In the late 1960s, physicians at MGH identified a very unusual cancer cluster. Eight young woman between the ages of 15-22 were found to have cancer of the vagina, an uncommon cancer even in elderly women. The cluster of cases in young women was initially reported as a case series, but there were no strong hypotheses about the cause.

In retrospect, the cause was in-utero exposure to DES. After World War II, DES started being prescribed for women who were having troubles with a pregnancy -- if there were signs suggesting the possibility of a miscarriage, DES was frequently prescribed. It has been estimated that between 1945-1950 DES was prescribed for about 20% of all pregnancies in the Boston area. Thus, the unborn fetus was exposed to DES in utero, and in a very small percentage of cases this resulted in development of vaginal cancer when the child was 15-22 years old (a very long latent period). There were several reasons why a case-control study was the only feasible way to identify this association: the disease was extremely rare (even in subjects who had been exposed to DES), there was a very long latent period between exposure and development of disease, and initially they had no idea what was responsible, so there were many possible exposures to consider.

In this situation, a case-control study was the only reasonable approach to identify the causative agent. Given how uncommon the outcome was, even a large prospective study would have been unlikely to have more than one or two cases, even after 15-20 years of follow-up. Similarly, a retrospective cohort study might have been successful in enrolling a large number of subjects, but the outcome of interest was so uncommon that few, if any, subjects would have had it. In contrast, a case-control study was conducted in which eight known cases and 32 age-matched controls provided information on many potential exposures. This strategy ultimately allowed the investigators to identify a highly significant association between the mother's treatment with DES during pregnancy and the eventual development of adenocarcinoma of the vagina in their daughters (in-utero at the time of exposure) 15 to 22 years later.

For more information see the DES Fact Sheet from the National Cancer Institute.

An excellent summary of this landmark study and the long-range effects of DES can be found in a Perspective article in the New England Journal of Medicine. A cohort of both mothers who took DES and their children (daughters and sons) was later formed to look for more common outcomes. Members of the faculty at BUSPH are on the team of investigators that follow this cohort for a variety of outcomes, particularly reproductive consequences and other cancers.

Selecting & Defining Cases and Controls

The "case" definition.

Careful thought should be given to the case definition to be used. If the definition is too broad or vague, it is easier to capture people with the outcome of interest, but a loose case definition will also capture people who do not have the disease. On the other hand, an overly restrictive case definition is employed, fewer cases will be captured, and the sample size may be limited. Investigators frequently wrestle with this problem during outbreak investigations. Initially, they will often use a somewhat broad definition in order to identify potential cases. However, as an outbreak investigation progresses, there is a tendency to narrow the case definition to make it more precise and specific, for example by requiring confirmation of the diagnosis by laboratory testing. In general, investigators conducting case-control studies should thoughtfully construct a definition that is as clear and specific as possible without being overly restrictive.

Investigators studying chronic diseases generally prefer newly diagnosed cases, because they tend to be more motivated to participate, may remember relevant exposures more accurately, and because it avoids complicating factors related to selection of longer duration (i.e., prevalent) cases. However, it is sometimes impossible to have an adequate sample size if only recent cases are enrolled.

Sources of Cases

Typical sources for cases include:

  • Patient rosters at medical facilities
  • Death certificates
  • Disease registries (e.g., cancer or birth defect registries; the SEER Program [Surveillance, Epidemiology and End Results] is a federally funded program that identifies newly diagnosed cases of cancer in population-based registries across the US )
  • Cross-sectional surveys (e.g., NHANES, the National Health and Nutrition Examination Survey)

Selection of the Controls

As noted above, it is always useful to think of a case-control study as being nested within some sort of a cohort, i.e., a source population that produced the cases that were identified and enrolled. In view of this there are two key principles that should be followed in selecting controls:

  • The comparison group ("controls") should be representative of the source population that produced the cases.
  • The "controls" must be sampled in a way that is independent of the exposure, meaning that their selection should not be more (or less) likely if they have the exposure of interest.

If either of these principles are not adhered to, selection bias can result (as discussed in detail in the module on Bias).

case control study groups

Note that in the earlier example of a case-control study conducted in the Massachusetts population, we specified that our sampling method was random so that exposed and unexposed members of the population had an equal chance of being selected. Therefore, we would expect that about 1,000 would be exposed and 5,000 unexposed (the same ratio as in the whole population), and came up with an odds ratio that was same as the hypothetical risk ratio we would have had if we had collected exposure information from the whole population of six million:

What if we had instead been more likely to sample those who were exposed, so that we instead found 1,500 exposed and 4,500 unexposed among the 6,000 controls?   Then the odds ratio would have been:

This odds ratio is biased because it differs from the true odds ratio.   In this case, the bias stemmed from the fact that we violated the second principle in selection of controls. Depending on which category is over or under-sampled, this type of bias can result in either an underestimate or an overestimate of the true association.

A hypothetical case-control study was conducted to determine whether lower socioeconomic status (the exposure) is associated with a higher risk of cervical cancer (the outcome). The "cases" consisted of 250 women with cervical cancer who were referred to Massachusetts General Hospital for treatment for cervical cancer. They were referred from all over the state. The cases were asked a series of questions relating to socioeconomic status (household income, employment, education, etc.). The investigators identified control subjects by going door-to-door in the community around MGH from 9:00 AM to 5:00  PM. Many residents are not home, but they persist and eventually enroll enough controls. The problem is that the controls were selected by a different mechanism than the cases, AND the selection mechanism may have tended to select individuals of different socioeconomic status, since women who were at home may have been somewhat more likely to be unemployed. In other words, the controls were more likely to be enrolled (selected) if they had the exposure of interest (lower socioeconomic status). 

Toggle open/close quiz question

Sources for "Controls"

Population controls:.

A population-based case-control study is one in which the cases come from a precisely defined population, such as a fixed geographic area, and the controls are sampled directly from the same population. In this situation cases might be identified from a state cancer registry, for example, and the comparison group would logically be selected at random from the same source population. Population controls can be identified from voter registration lists, tax rolls, drivers license lists, and telephone directories or by "random digit dialing". Population controls may also be more difficult to obtain, however, because of lack of interest in participating, and there may be recall bias, since population controls are generally healthy and may remember past exposures less accurately.

Example of a Population-based Case-Control Study: Rollison et al. reported on a "Population-based Case-Control Study of Diabetes and Breast Cancer Risk in Hispanic and Non-Hispanic White Women Living in US Southwestern States". (ALink to the article - Citation: Am J Epidemiol 2008;167:447–456).

"Briefly, a population-based case-control study of breast cancer was conducted in Colorado, New Mexico, Utah, and selected counties of Arizona. For investigation of differences in the breast cancer risk profiles of non-Hispanic Whites and Hispanics, sampling was stratified by race/ethnicity, and only women who self-reported their race as non-Hispanic White, Hispanic, or American Indian were eligible, with the exception of American Indian women living on reservations. Women diagnosed with histologically confirmed breast cancer between October 1999 and May 2004 (International Classification of Diseases for Oncology codes C50.0–C50.6 and C50.8–C50.9) were identified as cases through population-based cancer registries in each state."

"Population-based controls were frequency-matched to cases in 5-year age groups. In New Mexico and Utah, control participants under age 65 years were randomly selected from driver's license lists; in Arizona and Colorado, controls were randomly selected from commercial mailing lists, since driver's license lists were unavailable. In all states, women aged 65 years or older were randomly selected from the lists of the Centers for Medicare and Medicaid Services (Social Security lists). Of all women contacted, 68 percent of cases and 42 percent of controls participated in the study."

"Odds ratios and 95% confidence intervals were calculated using logistic regression, adjusting for age, body mass index at age 15 years, and parity. Having any type of diabetes was not associated with breast cancer overall (odds ratio = 0.94, 95% confidence interval: 0.78, 1.12). Type 2 diabetes was observed among 19% of Hispanics and 9% of non-Hispanic Whites but was not associated with breast cancer in either group."

In this example, it is clear that the controls were selected from the source population (principle 1), but less clear that they were enrolled independent of exposure status (principle 2), both because drivers' licenses were used for selection and because the participation rate among controls was low. These factors would only matter if they impacted on the estimate of the proportion of the population who had diabetes.

Hospital or Clinic Controls:

case control study groups

  • They have diseases that are unrelated to the exposure being studied. For example, for a study examining the association between smoking and lung cancer, it would not be appropriate to include patients with cardiovascular disease as control, since smoking is a risk factor for cardiovascular disease. To include such patients as controls would result in an underestimate of the true association.
  • Second, control patients in the comparison should have diseases with similar referral patterns as the cases, in order to minimize selection bias. For example, if the cases are women with cervical cancer who have been referred from all over the state, it would be inappropriate to use controls consisting of women with diabetes who had been referred primarily from local health centers in the immediate vicinity of the hospital. Similarly, it would be inappropriate to use patients from the emergency room, because the selection of a hospital for an emergency is different than for cancer, and this difference might be related to the exposure of interest.

The advantages of using controls who are patients from the same facility are:

  • They are easier to identify
  • They are more likely to participate than general population controls.
  • They minimize selection bias because they generally come from the same source population (provided referral patterns are similar).
  • Recall bias would be minimized, because they are sick, but with a different diagnosis.

Example: Several years ago the vascular surgeons at Boston Medical Center wanted to study risk factors for severe atherosclerosis of the lower extremities. The cases were patients who were referred to the hospital for elective surgery to bypass severe atherosclerotic blockages in the arteries to the legs. The controls consisted of patients who were admitted to the same hospital for elective joint replacement of the hip or knee. The patients undergoing joint replacement were similar in age and they also were following the same referral pathways. In other words, they met the "would" criterion: if one of the joint replacement surgery patients had developed severe atherosclerosis in their leg arteries, they would have been referred to the same hospital.

Friend, Neighbor, Spouse, and Relative Controls:

Occasionally investigators will ask cases to nominate controls who are in one of these categories, because they have similar characteristics, such as genotype, socioeconomic status, or environment, i.e., factors that can cause confounding, but are hard to measure and adjust for. By matching cases and controls on these factors, confounding by these factors will be controlled.   However, one must be careful that the controls satisfy the two fundamental principles. Often, they do not.

How Many Controls?

Since case-control studies are often used for uncommon outcomes, investigators often have a limited number of cases but a plentiful supply of potential controls. In this situation the statistical power of the study can be increased somewhat by enrolling more controls than cases. However, the additional power that is achieved diminishes as the ratio of controls to cases increases, and ratios greater than 4:1 have little additional impact on power. Consequently, if it is time-consuming or expensive to collect data on controls, the ratio of controls to cases should be no more than 4:1. However, if the data on controls is easily obtained, there is no reason to limit the number of controls.

Methods of Control Sampling

There are three strategies for selecting controls that are best explained by considering the nested case-control study described on page 3 of this module:

  • Survivor sampling: This is the most common method. Controls consist of individuals from the source population who do not have the outcome of interest.
  • Case-base sampling (also known as "case-cohort" sampling): Controls are selected from the population at risk at the beginning of the follow-up period in the cohort study within which the case-control study was nested.
  • Risk Set Sampling: In the nested case-control study a control would be selected from the population at risk at the point in time when a case was diagnosed.

The Rare Outcome Assumption

It is often said that an odds ratio provides a good estimate of the risk ratio only when the outcome of interest is rare, but this is only true when survivor sampling is used. With case-base sampling or risk set sampling, the odds ratio will provide a good estimate of the risk ratio regardless of the frequency of the outcome, because the controls will provide an accurate estimate of the distribution in the source population (i.e., not just in non-diseased people).

More on Selection Bias

Always consider the source population for case-control studies, i.e. the "population" that generated the cases. The cases are always identified and enrolled by some method or a set of procedures or circumstances. For example, cases with a certain disease might be referred to a particular tertiary hospital for specialized treatment. Alternatively, if there is a database or a disease registry for a geographic area, cases might be selected at random from the database. The key to avoiding selection bias is to select the controls by a similar, if not identical, mechanism in order to ensure that the controls provide an accurate representation of the exposure status of the source population.

Example 1: In the first example above, in which cases were randomly selected from a geographically defined database, the source population is also defined geographically, so it would make sense to select population controls by some random method. In contrast, if one enrolled controls from a particular hospital within the geographic area, one would have to at least consider whether the controls were inherently more or less likely to have the exposure of interest. If so, they would not provide an accurate estimate of the exposure distribution of the source population, and selection bias would result.

Example 2: In the second example above, the source population was defined by the patterns of referral to a particular hospital for a particular disease. In order for the controls to be representative of the "population" that produced those cases, the controls should be selected by a similar mechanism, e.g., by contacting the referring health care providers and asking them to provide the names of potential controls. By this mechanism, one can ensure that the controls are representative of the source population, because if they had had the disease of interest they would have been just as likely as the cases to have been included in the case group (thus fulfilling the "would" criterion).

Example 3: A food handler at a delicatessen who is infected with hepatitis A virus is responsible for an outbreak of hepatitis which is largely confined to the surrounding community from which most of the customers come. Many (but not all) of the infected cases are identified by passive and active surveillance. How should controls be selected? In this situation, one might guess that the likelihood of people going to the delicatessen would be heavily influenced by their proximity to it, and this would to a large extent define the source population. In a case-control study undertaken to identify the source, the delicatessen is one of the exposures being tested. Consequently, even if the cases were reported to the state-wide surveillance system, it would not be appropriate to randomly select controls from the state, the county, or even the town where the delicatessen is located. In other words, the "would" criterion doesn't work here, because anyone in the state with clinical hepatitis would end up in the surveillance system, but someone who lived far from the deli would have a much lower likelihood of having the exposure. A better approach would be to select controls who were matched to the cases by neighborhood, age, and gender. These controls would have similar access to go to the deli if they chose to, and they would therefore be more representative of the source population.

Analysis of Case-Control Studies

The computation and interpretation of the odds ratio in a case-control study has already been discussed in the modules on Overview of Analytic Studies and Measures of Association. Additionally, one can compute the confidence interval for the odds ratio, and statistical significance can also be evaluated by using a chi-square test (or a Fisher's Exact Test if the sample size is small) to compute a p-value. These calculations can be done using the Case-Control worksheet in the Excel file called EpiTools.XLS.

Image of the Case-Control worksheet in the Epi_Tools file

Advantages and Disadvantages of Case-Control Studies

Advantages:

  • They are efficient for rare diseases or diseases with a long latency period between exposure and disease manifestation.
  • They are less costly and less time-consuming; they are advantageous when exposure data is expensive or hard to obtain.
  • They are advantageous when studying dynamic populations in which follow-up is difficult.

Disadvantages:

  • They are subject to selection bias.
  • They are inefficient for rare exposures.
  • Information on exposure is subject to observation bias.
  • They generally do not allow calculation of incidence (absolute risk).

IMAGES

  1. Case-control Study

    case control study groups

  2. Case-Control Study

    case control study groups

  3. What is the Difference Between Case Control and Cohort Study

    case control study groups

  4. Case-control study

    case control study groups

  5. PPT

    case control study groups

  6. PPT

    case control study groups

VIDEO

  1. Case Studies

  2. BANS_184 CBCS IGNOU public health and epidemiology L-5 unit 1 classes case control study

  3. Case control study

  4. Cohort and Case Control Study

  5. #5- Case Control Studies part 1

  6. case control study epidemiology by dr Ostovar

COMMENTS

  1. What Are Some Examples of Case Studies?

    Examples of a case study could be anything from researching why a single subject has nightmares when they sleep in their new apartment, to why a group of people feel uncomfortable in heavily populated areas. A case study is an in-depth anal...

  2. What Does a Control Mean in Scientific Terms?

    In scientific terms, the word control means to create a group that experiences the same conditions as a test group during a study, without being exposed to the experimental factor or treatment that the test group is.

  3. What Is a Case Study?

    When you’re performing research as part of your job or for a school assignment, you’ll probably come across case studies that help you to learn more about the topic at hand. But what is a case study and why are they helpful? Read on to lear...

  4. Case–control study

    A case–control study is a type of observational study in which two existing groups differing in outcome are identified and compared on the basis of some

  5. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes.

  6. Case Control Studies

    A case-control study is a type of observational study commonly used to look at factors associated with diseases or outcomes.[1] The case-control

  7. What Is a Case-Control Study?

    A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar

  8. Study Design 101: Case Control Study

    Case control studies are observational because no intervention is attempted and no attempt is made to alter the course of the disease. The goal

  9. Chapter 8. Case-control and cross sectional studies

    Many case-control studies ascertain exposure from personal recall, using either a self administered questionnaire or an interview. The validity of such

  10. Case-Control Studies

    conducting a case-control study. We will discuss 3 possible ways to select

  11. Case-Control Study

    A case-control study is a study in which an experimental group of patients is chosen for being characterized by some outcome factor, such as having acquired a

  12. Case Control

    Case Control. In a Case-Control study there are two groups of people: one has a health issue (Case group), and this group is “matched” to a

  13. Case Control Studies

    Controls must have as similar a background as possible to the cases, except that they do not have the outcome in question. They should come from the same

  14. Case-Control Studies

    Instead of obtaining the denominators for the rates or risks, however, a control group is sampled from the entire source population that gives rise to the cases