How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.


Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Make a Science Fair Poster or Display
  • Understanding Simple vs Controlled Experiments
  • How to Organize Your Science Fair Poster
  • Scientific Method Lesson Plan
  • What Is an Experiment? Definition and Design
  • What Are the Elements of a Good Hypothesis?
  • The 10 Most Important Lab Safety Rules
  • 6 Steps to Writing the Perfect Personal Essay
  • How to Write a Great Book Report


Complete Guide to Writing a Lab Report (With Example)

Students tend to approach writing lab reports with confusion and dread. Whether in high school science classes or undergraduate laboratories, experiments are always fun and games until the times comes to submit a lab report. What if we didn’t need to spend hours agonizing over this piece of scientific writing? Our lives would be so much easier if we were told what information to include, what to do with all their data and how to use references. Well, here’s a guide to all the core components in a well-written lab report, complete with an example.

Things to Include in a Laboratory Report

The laboratory report is simply a way to show that you understand the link between theory and practice while communicating through clear and concise writing. As with all forms of writing, it’s not the report’s length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar analysis with Benedict’s reagent.

The report’s title should be short but descriptive, indicating the qualitative or quantitative nature of the practical along with the primary goal or area of focus.

Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice .


The introduction provides context to the experiment in a couple of paragraphs and relevant diagrams. While a short preamble outlining the history of the techniques or materials used in the practical is appropriate, the bulk of the introduction should outline the experiment’s goals, creating a logical flow to the next section.

Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

Step-by-step methods are usually provided in high school and undergraduate laboratory practicals, so it’s just a matter of paraphrasing them. This is usually the section that teachers and demonstrators care the least about. Any unexpected changes to the experimental setup or techniques can also be documented here.

The results section should include the raw data that has been collected in the experiment as well as calculations that are performed. It is usually appropriate to include diagrams; depending on the experiment, these can range from scatter plots to chromatograms.

The discussion is the most critical part of the lab report as it is a chance for you to show that you have a deep understanding of the practical and the theory behind it. Teachers and lecturers tend to give this section the most weightage when marking the report. It would help if you used the discussion section to address several points:

  • Explain the results gathered. Is there a particular trend? Do the results support the theory behind the experiment?
  • Highlight any unexpected results or outlying data points. What are possible sources of error?
  • Address the weaknesses of the experiment. Refer to the materials and methods used to identify improvements that would yield better results (more accurate equipment, better experimental technique, etc.)  

Finally, a short paragraph to conclude the laboratory report. It should summarize the findings and provide an objective review of the experiment.

If any external sources were used in writing the lab report, they should go here. Referencing is critical in scientific writing; it’s like giving a shout out (known as a citation) to the original provider of the information. It is good practice to have at least one source referenced, either from researching the context behind the experiment, best practices for the method used or similar industry standards.

Google Scholar is a good resource for quickly gathering references of a specific style . Searching for the article in the search bar and clicking on the ‘cite’ button opens a pop-up that allows you to copy and paste from several common referencing styles.

referencing styles from google scholar

Example: Writing a Lab Report

Title : Semi-Quantitative Analysis of Food Products using Benedict’s Reagent

Abstract : Food products (milk, chicken, bread, orange juice) were solubilized and tested for reducing sugars using Benedict’s reagent. Milk contained the highest level of reducing sugars at ~2%, while chicken contained almost no reducing sugars.

Introduction : Sugar detection has been of interest for over 100 years, with the first test for glucose using copper sulfate developed by German chemist Karl Trommer in 1841. It was used to test the urine of diabetics, where sugar was present in high amounts. However, it wasn’t until 1907 when the method was perfected by Stanley Benedict, using sodium citrate and sodium carbonate to stabilize the copper sulfate in solution. Benedict’s reagent is a bright blue because of the copper sulfate, turning green and then red as the concentration of reducing sugars increases.

Benedict’s reagent was used in this experiment to compare the amount of reducing sugars between four food items: milk, chicken solution, bread and orange juice. Following this, standardized glucose solutions (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) were tested with Benedict’s reagent to determine the color produced at those sugar levels, allowing us to perform a semi-quantitative analysis of the food items.

Method : Benedict’s reagent was prepared by mixing 1.73 g of copper (II) sulfate pentahydrate, 17.30 g of sodium citrate pentahydrate and 10.00 g of sodium carbonate anhydrous. The mixture was dissolved with stirring and made up to 100 ml using distilled water before filtration using filter paper and a funnel to remove any impurities.

4 ml of milk, chicken solution and orange juice (commercially available) were measured in test tubes, along with 4 ml of bread solution. The bread solution was prepared using 4 g of dried bread ground with mortar and pestle before diluting with distilled water up to 4 ml. Then, 4 ml of Benedict’s reagent was added to each test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Next, glucose solutions were prepared by dissolving 0.5 g, 1.0 g, 1.5 g and 2.0 g of glucose in 100 ml of distilled water to produce 0.5%, 1.0%, 1.5% and 2.0% solutions, respectively. 4 ml of each solution was added to 4 ml of Benedict’s reagent in a test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Results : Food Solutions (4 ml) with Benedict’s Reagent (4 ml)

Glucose Solutions (4 ml) with Benedict’s Reagent (4 ml)

Semi-Quantitative Analysis from Data

Discussion : From the analysis of food solutions along with the glucose solutions of known concentrations, the semi-quantitative analysis of sugar levels in different food products was performed. Milk had the highest sugar content of 2%, with orange juice at 1.5%, bread at 0.5% and chicken with 0% sugar. These values were approximated; the standard solutions were not the exact color of the food solutions, but the closest color match was chosen.

One point of contention was using the orange juice solution, which conferred color to the starting solution, rendering it green before the reaction started. This could have led to the final color (and hence, sugar quantity) being inaccurate. Also, since comparing colors using eyesight alone is inaccurate, the experiment could be improved with a colorimeter that can accurately determine the exact wavelength of light absorbed by the solution.

Another downside of Benedict’s reagent is its inability to react with non-reducing sugars. Reducing sugars encompass all sugar types that can be oxidized from aldehydes or ketones into carboxylic acids. This means that all monosaccharides (glucose, fructose, etc.) are reducing sugars, while only select polysaccharides are. Disaccharides like sucrose and trehalose cannot be oxidized, hence are non-reducing and will not react with Benedict’s reagent. Furthermore, Benedict’s reagent cannot distinguish between different types of reducing sugars.

Conclusion : Using Benedict’s reagent, different food products were analyzed semi-quantitatively for their levels of reducing sugars. Milk contained around 2% sugar, while the chicken solution had no sugar. Overall, the experiment was a success, although the accuracy of the results could have been improved with the use of quantitative equipment and methods.

Reference :

  • Raza, S. I., Raza, S. A., Kazmi, M., Khan, S., & Hussain, I. (2021). 100 Years of Glucose Monitoring in Diabetes Management.  Journal of Diabetes Mellitus ,  11 (5), 221-233.
  • Benedict, Stanley R (1909). A Reagent for the Detection of Reducing Sugars.  Journal of Biological Chemistry ,  5 , 485-487.

Using this guide and example, writing a lab report should be a hassle-free, perhaps even enjoyable process!

About the Author

sean author

Sean is a consultant for clients in the pharmaceutical industry and is an associate lecturer at La Trobe University, where unfortunate undergrads are subject to his ramblings on chemistry and pharmacology.

You Might Also Like…

man respirator next to hot spring ftloscience post

Why Do Hot Springs Smell Bad? Hydrogen Sulfide is to Blame

Fungi are the deadliest agricultural pest that you don’t see.

patreon ftloscience

If our content has been helpful to you, please consider supporting our independent science publishing efforts: for just $1 a month.

© 2023 FTLOScience • All Rights Reserved

CrelioHealth For Diagnostics

banner image of blog on lab report writing guide with laboratory report format, templates and structure

How To Write a Laboratory Report: Guide 2024

Why are lab reports important? Lab reports are essential for communicating the findings of medical diagnosis or scientific research & experiments. L ab Report Writing by researchers, clinicians, and other healthcare professionals helps them to make informed decisions about patient care, drug development, and other essential matters.

To write a laboratory report in the correct format is essential, ensuring your findings are clearly and accurately communicated. A lab report writing guide provides a comprehensive framework to help you navigate the process of creating a well-structured and informative lab report. So, this guide will provide you with a step-by-step guide on how to write a laboratory report, including tips on structure, content, and style.

I. Understanding Lab Reports

The key to decoding lab reports lies in grasping the specific terminology, understanding the significance of data, and appreciating the overall narrative that the report conveys. Further, learn how to understand lab reports under these headings:

A. What is a Lab Report?

A lab report is a written document that describes the findings of a medical diagnosis, research, or scientific experiment. Lab report writing includes information on the purpose of the investigation, the methods used, the results obtained, and the conclusions drawn.

B. Lab Reports Types

There are many types of different lab reports. And, they can generally be classified into two categories:

  • Qualitative lab reports:  These reports describe the results of diagnosis that produce non-numerical data, such as observations, descriptions, and images.
  • Quantitative lab reports: These reports describe the results of studies/findings that produce numerical data, such as counts, measurements, and calculations.

C. Purpose of Lab Reports

The purpose of a lab report is to communicate the findings of a diagnosis, experimental study, or research to others. This may be done for a variety of reasons, such as:

  • To share findings with other healthcare providers or scientists
  • To report on the results of a clinical diagnosis or trial
  • To fulfill the requirements of a course or degree
  • To document the results of a quality control test

II. Preparing for Laboratory Reporting

Before you begin with the steps to writing a lab report, it is essential to:

Familiarize yourself with the diagnosis: Make sure you understand the purpose of the investigation, the approach used, and the expected results.

Gather necessary references: This includes data, charts, graphs, and other relevant information.

Consider safety considerations: Make sure to follow all safety protocols when conducting the experiment and writing the report.

III. Structure of a Lab Report

A typical structure of a lab report is as follows:

  • Title: The title should be clear and concise, and it should accurately reflect the content of the report.
  • Abstract: The abstract is a brief summary of the report, including the diagnostic’s purpose of the diagnosis, methodologies, results, and conclusions.
  • Introduction: The introduction provides background information on the experiment, including the purpose of the experiment, the hypothesis, and any relevant literature review.
  • Materials and Methods: This section describes the materials used and the procedures followed in conducting the diagnosis.
  • Results: This section presents the results of the clinical studies in a clear and concise manner. Data may be offered in tables, charts, and graphs.
  • Discussion: The discussion section interprets the medical diagnosis results and discusses their implications. It is important to compare your results to those of other studies and to discuss any limitations of the study.
  • Conclusion: The conclusion summarizes the main findings of the experiment and states the conclusions that can be drawn.

how to write lab report example

Lab Reporting Made Simple with CrelioHealth

Iv. lab report templates.

Let’s explore and enhance your understanding of the most critical aspect of Lab Report Layout.

A. Importance of Using Templates

  • Enhanced Consistency: Templates provide a structured laboratory report format that ensures consistency across all reports. This is crucial in the healthcare and medical field, where precision and standardization are essential. Consistent reports are easier to review, understand, and compare.
  • Time and Effort Savings:   Ready-to-use templates significantly reduce the time and effort required to create lab reports. Instead of starting from scratch with each report, you can fill in the necessary information and focus on the content. According to a study by the University of Toronto, professionals using templates save an average of 25% of their report creation time.
  • Error Reduction: Templates include predefined sections and lab reporting formatting guidelines, reducing the likelihood of errors in your lab reports. This minimizes the risk of oversight or omission, improving the overall quality of the report.

B. Sample Lab Report Template

Toxicology laboratory report template.

A toxicology template in a structured laboratory report writing format is specifically designed for reporting findings related to toxic substances and their effects on living organisms. Moreover, this template typically includes sections detailing the toxic agents, exposure levels, symptoms, and recommendations.

View an example of a simplified toxicology laboratory report template here.

Molecular Diagnostics Report Template

Molecular diagnostics reports provide information about examining tissues at the molecular level. Also, a molecular testing report template contains sections detailing patient information, gene & variant information, observations, and diagnostic conclusions.

Here’s an example of a Next Generation Sequencing report template:

image showing lab report template for next generation sequencing

Difference Between Report Templates

The key difference between report templates lies in their focus and content. While both templates share common elements like title, abstract, methods, and references, a toxicology report template is tailored to the specific needs of toxicological analysis. In contrast, a molecular test report template is designed for reporting on tissue examination. The choice of a template depends on the type of study or experiment.

C. Examples and Sample Lab Reports

Analyzing well-written lab reports :.

To understand the importance of templates, let’s analyze a well-written lab report. In a study conducted by the University of Nottingham, it was found that the structure of a lab report using templates had a 15% higher clarity score than those without templates. Furthermore, this demonstrates the immediate impact on report quality.

understanding lab reports through these sample reports

Extracting Key Elements :

Well-written lab reports often share common elements, such as a clear introduction, hypothesis, detailed methods, comprehensive results, and insightful discussions. Therefore, by analyzing numerous sample reports, you can learn to identify and extract these key elements to incorporate into your reports effectively.

Learning from Successful Reports :

Successful lab reports set a benchmark for quality. For instance, a published clinical trial report that adheres to industry standards can serve as a valuable reference. Also, learning from such reports can help you understand the level of detail required, ethical considerations, and the integration of statistical data.

D. Customizing Templates for Your Needs

Branding & whitelabeling:.

In healthcare institutions or research organizations, it’s essential to maintain a professional brand identity. Moreover, templates can be customized to include the organization’s logo, color scheme, and fonts. This branding not only reinforces the organization’s image but also distinguishes reports as official documents.

Personalization & Localization:

Lab report templates can be personalized for individual researchers, specific study requirements, or for engaging customers. For instance, a researcher may need to add credentials, contact information, or a personalized header. Templates can also be localized for different regions, taking into account language preferences, lab reporting formatting standards, and specific regulatory requirements.

Customizing templates for branding, personalization, and localization adds a layer of professionalism to your reports, making them more reader-friendly and aligned with the organization’s identity and the specific needs of your target audience.

V. Tips for Effective Lab Reporting

Comprehensive detailing of medical test reports helps in effective lab reporting skills. As a result, it becomes practical to produce high-quality reports that meet industry standards and ethical lab report guidelines.

A. Clarity and Precision in Writing

  • Use Clear and Concise Language : When writing a lab report, it’s vital to use clear, straightforward language. Avoid jargon or overly technical terms that might confuse readers who are not experts in your field. Your goal is to ensure that anyone, regardless of their background, can understand the report. To keep it clear and simple to patients, smart reports and trend reports  have become popular today. Get an example of smart reports here .
  • Define Technical Terms : While clarity is crucial, there will be instances where specialized terminology is necessary. In such cases, provide definitions or explanations for these terms, either in the text or through a glossary. This aids comprehension and ensures your patients, stakeholders, and other readers are on the same page.
  • Avoid Ambiguity : Ambiguity can lead to misinterpretation. Be explicit in your descriptions and explanations. Use precise language to leave no room for doubt or multiple interpretations of your findings.

B. Data Presentation

  • Choose the Right Visual Aids : When presenting data, select appropriate visual aids like tables, charts, graphs, and figures. The choice should depend on the data type and what will best illustrate your findings.
  • Label and Caption Clearly : Ensure that every visual aid is properly labeled and captioned. These labels and captions should be informative, providing context for the reader. Readers should be able to understand the significance of the visual without having to reference the main text extensively.
  • Consistency in Data Presentation:  Maintain a consistent style for presenting data throughout the report. Consistency in fonts, colors, and medical lab report formatting makes the information visually appealing and easier to follow.
  • Avoid Data Overload : While it’s essential to present relevant data, avoid overwhelming the reader with an excessive amount of information. Select the most crucial data points and present them clearly.

By adhering to such lab report layout and these tips for effective lab reporting, you’ll create reports that are not only accurate and comprehensive but also highly readable and professional. Hence, clear writing, precise data presentation, ethical considerations, and thorough validation & approval are vital in producing reports that make a significant impact in the field of healthcare and medical research.

VI. Common Mistakes to Avoid

While lab report writing, it is crucial to avoid the following common mistakes:

  • Factual errors: Carefully check your results and conclusions for factual errors.
  • Inconsistent formatting:  Use a consistent lab reporting format throughout your report. This includes using the same font, font size, and margins throughout.
  • Neglecting data analysis: Do not simply present your data without analyzing it. Interpret the results of your diagnosis and discuss their implications.
  • Ignoring ethical considerations: Discuss any ethical considerations that apply to your methods.

VII. Lab Report Submission

Submitting a lab report is the culmination of meticulous work and precision. Additionally, ensuring that the laboratory report writing format is correct, adheres to submission protocols, and is submitted on time is essential.

A. Formatting Guidelines

Follow the Prescribed Laboratory Report Format :   Each type of lab report, whether a clinical report, research report, or analytical report, often has specific formatting guidelines. It is crucial to adhere to these lab report guidelines to maintain consistency and readability. Moreover, inconsistencies in medical lab report format can distract readers and lead to misinterpretations.

Font and Spacing: Pay attention to the prescribed font type and size. Common choices are Times New Roman or Arial, with font size typically set at 12 points. Ensure that your report has proper line spacing, often set at double spacing, to enhance readability.

Margin Requirements: Be aware of margin requirements. Standard margins are usually set at 1 inch (2.54 cm) on all sides. Also, following these margin guidelines ensures that your document looks clean and professional.

Page Numbering: Lab reports may require specific page numbering, such as placing page numbers in the upper right or lower right corner. Ensure that page numbers are consistent throughout the document.

Tables and Figures:   If your report includes tables and figures, make sure they are labeled and formatted per the lab report guidelines. Further, this includes consistent table and figure titles, numbering, and sources. Tables and figures in the structure of laboratory reports enhance the report’s visual appeal.

B. Submission Protocols

Submission Method: Different institutions and organizations may have distinct methods for submitting lab reports. Standard methods include email submissions, online portals, or physical submissions. Verify the method specified by your institution.

Cover Page: In some cases, lab reports require a cover page with essential information like your name, course or title, submission date, and any other relevant details. Ensure this cover page is included if required.

Lab Report Title: When submitting the report, ensure that the title accurately represents the content of your report. A well-chosen title helps readers and reviewers quickly understand the report’s focus.

Acknowledgment of Collaborators: If you collaborated with other researchers or medical professionals on the lab report, acknowledge their contributions. This is not only an ethical practice but also enhances the credibility of your work.

Submission Deadlines: Meeting deadlines is non-negotiable in lab report submission. Your lab’s TAT depends on it. Be aware of this submission deadline, and make sure your report is submitted well in advance to account for any unforeseen issues.

C. Deadlines and Extensions

Timely Submission: Timely submission is a hallmark of professionalism. Failing to meet deadlines can have serious repercussions. For example, the punishment for late submissions of the COVID-19 reports to the state government or the federal government was severely strict and non-negotiable.

Requesting Extensions: If you foresee that you might not be able to meet the submission deadline, it’s advisable to request an extension well in advance. Most institutions have formal procedures for extension requests. Explain your reasons for needing an extension clearly and provide a realistic new submission date.

Consequences of Missed Deadlines: Be aware that missed deadlines can lead to academic penalties, reduced credibility, and the loss of opportunities. The impact can be severe in clinical settings, where timely reporting is critical for patient care.

Remember that lab report submission is the last critical step in the lab reporting process. Proper laboratory report writing format, adherence to submission protocols, and timely submissions are essential to ensure that your hard work and research are effectively communicated and contribute to the advancement of healthcare and medical knowledge. Always verify specific requirements with your institution or organization, and make it a practice to submit your lab reports with precision and professionalism.

Lab reports are essential for communicating the findings of scientific experiments to other scientists, clinicians, and healthcare professionals. It is vital to encourage all staff and researchers to be familiar with the best practices for writing lab reports. Lab report templates can be a helpful tool for writing a well-structured and informative report. These structure of laboratory reports can also be used to personalize and brand your reports.

Additional Resources

Here are some additional resources that you may find helpful:

  • Writing the Laboratory Report by Pamela J. Saltman
  • A Guide to Scientific Writing by Robert A. Day
  • The ACS Style Guide by the American Chemical Society
  • CrelioHealth
  • LabArchives
  • How to Write a Lab Report by the University of Nottingham
  • Lab Report Guidelines by the University of Toronto
  • Writing a Lab Report by Phoenix College

Here are some Answers to Common Questions for Understanding Lab Reports better:

  • What is the purpose of a lab report? The purpose of a lab report is to communicate the findings of an experiment to others. This may be done for a variety of reasons, such as to share findings with other scientists, to report on the results of a clinical trial, or to fulfill the requirements of a course or degree.
  • What are the parts of a lab report? A typical lab report includes the following sections: title, abstract, introduction, materials and methods, results, discussion, conclusion, and references.
  • What is the format of a lab report? Lab reports should be written in a clear and concise style. The lab reporting format will vary depending on the specific requirements of your instructor or supervisor. However, most lab reports follow a standard format, as described in this lab report writing guide.

Related Posts

how to write lab report example

The Truth About External Lab Partnerships to Enhance Specialized Services

title image for a blog on multi center lab management

10 Mistakes to Avoid for Enhanced Multi-Center Lab Management

Leave a reply cancel reply, discover more from creliohealth for diagnostics.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?


  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Mar 8, 2024 2:26 PM
  • URL:

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.


How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”


“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Lab Report Format – How to Write a Laboratory Report

A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions.

A science laboratory experiment isn’t truly complete until you’ve written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn’t the same as a lab report. The lab report format is designed to present experimental results so they can be shared with others. A well-written report explains what you did, why you did it, and what you learned. It should also generate reader interest, potentially leading to peer-reviewed publication and funding.

Sections of a Lab Report

There is no one lab report format. The format and sections might be specified by your instructor or employer. What really matters is covering all of the important information.

Label the sections (except the title). Use bold face type for the title and headings. The order is:

You may or may not be expected to provide a title page. If it is required, the title page includes the title of the experiment, the names of the researchers, the name of the institution, and the date.

The title describes the experiment. Don’t start it with an article (e.g., the, an, a) because it messes up databases and isn’t necessary. For example, a good title might be, “Effect of Increasing Glucose Concentration on Danio rerio Egg Hatching Rates.” Use title case and italicize the scientific names of any species.


Sometimes the introduction is broken into separate sections. Otherwise, it’s written as a narrative that includes the following information:

  • State the purpose of the experiment.
  • State the hypothesis.
  • Review earlier work on the subject. Refer to previous studies. Cover the background so a reader understands what is known about a subject and what you hope to learn that is new.
  • Describe your approach to answering a question or solving a problem. Include a theory or equation, if appropriate.

This section describes experimental design. Identify the parameter you changed ( independent variable ) and the one you measured ( dependent variable ). Describe the equipment and set-up you used, materials, and methods. If a reader can’t picture the apparatus from your description, include a photograph or diagram. Sometimes this section is broken into “Materials” and “Methods.”

Your lab notebook contains all of the data you collected in the experiment. You aren’t expected to reproduce all of this in a lab report. Instead, provide labelled tables and graphs. The first figure is Figure 1, the second is Figure 2, etc. The first graph is Graph 1. Refer to figures and graphs by their figure number. For some experiments, you may need to include labelled photographs. Cite the results of any calculations you performed, such as slope and standard deviation. Discuss sources of error here, including instrument, standard, and random errors.

Discussion or Conclusions

While the “Results” section includes graphs and tables, the “Discussion” or “Conclusions” section focuses on what the results mean. This is where you state whether or not the objective of the experiment was met and what the outcome means.  Propose reasons for discrepancies between expected and actual outcomes. Finally, describe the next logical step in your research and ways you might improve on the experiment.

References or Bibliography

Did you build upon work conducted by someone else? Cite the work. Did you consult a paper relating to the experiment? Credit the author. If you’re unsure whether to cite a reference or not, a good rule of thumb is to include a reference for any fact not known to your audience. For some reports, it’s only necessary to list publications directly relating to your procedure and conclusions.

The Tone of a Lab Report

Lab reports should be informative, not entertaining. This isn’t the place for humor, sarcasm, or flowery prose. A lab report should be:

  • Concise : Cover all the key points without getting crazy with the details.
  • Objective : In the “Conclusions” section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.
  • Critical : After presenting what you did, the report focuses on what the data means. Be on the lookout for sources of error and identify them. Use your understanding of error to determine how reliable your results are and gauge confidence in your conclusions.

Related Posts

Purdue University

  • Ask a Librarian

Chemistry Lab Resources (for CHM 1XX and 2XX Labs)

  • Organizing Your Lab Notebook
  • Parts of a Lab Report
  • Writing Your Lab Report/Worksheet
  • Graphs/Tables
  • Common Calculations
  • Citing Sources
  • Finding Chemical Properties
  • Lab techniques, instrumentation, and protocols
  • Chemical Safety

General tips

Whether you are filling out lab worksheets or writing up entire lab reports, there are a few tips that will help you to create more detailed and professional documents and to assist in grading:

  • Always label your units
  • Show all of your calculations (don’t leave out steps)
  • Use complete sentences
  • Write neatly
  • Strike out mistakes with a single line
  • Be aware of significant figures, noting the sensitivity of the device you are using for your measurements

Why do we write lab reports in passive voice?

It’s part of the scientific point of view.  We observe and record as objectively as possible, avoiding personal bias by removing ourselves.  Using the passive voice also clarifies procedures and descriptions so they can be easily reproduced and compared.

NOTE: DO NOT write reports as directions, such as those given in your lab manual. For example, do not write, "Heat the solution until it boils." Instead, write "The solution was heated to boiling."

Write in the third person - Scientific experiments demonstrate facts that do not depend on the observer, therefore, reports should avoid using the first and second person (I,me,my,we,our, OR us.)

Using the correct verb tense - Lab reports and research papers should be mainly written in the present tense. You should limit the use of the past tense to (1) describe specific experimental methods and observations, and (2) citing results published in the past.

Tables and Figures - Should be used when they are a more efficient ways to convey information than verbal description. They must be independent units, accompanied by explanatory captions that allow them to be understood by someone who has not read the text.

Writing in the passive voice

Examples of passive voice in lab reports.

200mL of distilled water was poured into a 500 mL beaker.

I poured 200mL of distilled water in a beaker. (active voice)

Pour 200mL water in a beaker. (direction/command)

The covered crucible was mounted on a ring stand.

We put the crucible on a ring stand. (active voice)

Set the crucible on a ring stand. (direction/command)

The temperature was initially measured at 75°C.

I measured the temperature at 75°C. (active voice)

Measure and write down the temperature. (direction/command)

It's understood that all actions were done by the experimenter.

Avoiding Plagiarism

  • Avoiding Plagiarism From Purdue's OWL

Passive voice information derived from original work at Delta College Teaching/Learning Center

Writing a Lab Report

Purdue students explain strategies for dividing the workload for writing a lab report.

Sample Lab Reports

  • Determination of the Alcohol Content of Whiskey [Courtesy of Univ. of Oregon]
  • Synthesis and Characterization of Luminol [Courtesy of Truman State Univ.]
  • Production of Biodiesel [Courtesy of Univ. of Vermont]
  • << Previous: Parts of a Lab Report
  • Next: Graphs/Tables >>
  • Last Edited: Feb 12, 2024 9:29 AM
  • URL:
  • Writing Home
  • Writing Advice Home

The Lab Report

  • Printable PDF Version
  • Fair-Use Policy

This document describes a general format for lab reports that you can adapt as needed. Lab reports are the most frequent kind of document written in engineering and can count for as much as 25% of a course yet little time or attention is devoted to how to write them well. Worse yet, each professor wants something a little different. Regardless of variations, however, the goal of lab reports remains the same: document your findings and communicate their significance. With that in mind, we can describe the report’s format and basic components. Knowing the pieces and purpose, you can adapt to the particular needs of a course or professor.

A good lab report does more than present data; it demonstrates the writer’s comprehension of the concepts behind the data. Merely recording the expected and observed results is not sufficient; you should also identify how and why differences occurred, explain how they affected your experiment, and show your understanding of the principles the experiment was designed to examine. Bear in mind that a format, however helpful, cannot replace clear thinking and organized writing. You still need to organize your ideas carefully and express them coherently.

Typical Components

  • Introduction
  • Methods and Materials (or Equipment)
  • Experimental Procedure
  • Further Reading

1. The Title Page needs to contain the name of the experiment, the names of lab partners, and the date. Titles should be straightforward, informative, and less than ten words (i.e. Not “Lab #4” but “Lab #4: Sample Analysis using the Debye-Sherrer Method”). 2. The Abstract summarizes four essential aspects of the report: the purpose of the experiment (sometimes expressed as the purpose of the report), key findings, significance and major conclusions. The abstract often also includes a brief reference to theory or methodology. The information should clearly enable readers to decide whether they need to read your whole report. The abstract should be one paragraph of 100-200 words (the sample below is 191 words).

Quick Abstract Reference

  • Key result(s)
  • Most significant point of discussion
  • Major conclusion

May Include:

  • Brief method
  • Brief theory


ONE page 200 words MAX.

Sample Abstract

This experiment examined the effect of line orientation and arrowhead angle on a subject’s ability to perceive line length, thereby testing the Müller-Lyer illusion. The Müller-Lyer illusion is the classic visual illustration of the effect of the surrounding on the perceived length of a line. The test was to determine the point of subjective equality by having subjects adjust line segments to equal the length of a standard line. Twenty-three subjects were tested in a repeated measures design with four different arrowhead angles and four line orientations. Each condition was tested in six randomized trials. The lines to be adjusted were tipped with outward pointing arrows of varying degrees of pointedness, whereas the standard lines had inward pointing arrows of the same degree. Results showed that line lengths were overestimated in all cases. The size of error increased with decreasing arrowhead angles. For line orientation, overestimation was greatest when the lines were horizontal. This last is contrary to our expectations. Further, the two factors functioned independently in their effects on subjects’ point of subjective equality. These results have important implications for human factors design applications such as graphical display interfaces.

3. The introduction is more narrowly focussed than the abstract. It states the objective of the experiment and provides the reader with background to the experiment. State the topic of your report clearly and concisely, in one or two sentences:

Quick Intro Reference

  • Purpose of the experiment
  • Important background and/or theory

May include:

  • Description of specialized equipment
  • Justification of experiment’s importance
Example: The purpose of this experiment was to identify the specific element in a metal powder sample by determining its crystal structure and atomic radius. These were determined using the Debye-Sherrer (powder camera) method of X-ray diffraction.

A good introduction also provides whatever background theory, previous research, or formulas the reader needs to know. Usually, an instructor does not want you to repeat the lab manual, but to show your own comprehension of the problem. For example, the introduction that followed the example above might describe the Debye-Sherrer method, and explain that from the diffraction angles the crystal structure can be found by applying Bragg’s law. If the amount of introductory material seems to be a lot, consider adding subheadings such as: Theoretical Principles or Background.

Note on Verb Tense

Introductions often create difficulties for students who struggle with keeping verb tenses straight. These two points should help you navigate the introduction:

“The objective of the experiment was…”
“The purpose of this report is…” “Bragg’s Law for diffraction is …” “The scanning electron microscope produces micrographs …”

4. Methods and Materials (or Equipment) can usually be a simple list, but make sure it is accurate and complete. In some cases, you can simply direct the reader to a lab manual or standard procedure: “Equipment was set up as in CHE 276 manual.” 5. Experimental Procedure describes the process in chronological order. Using clear paragraph structure, explain all steps in the order they actually happened, not as they were supposed to happen. If your professor says you can simply state that you followed the procedure in the manual, be sure you still document occasions when you did not follow that exactly (e.g. “At step 4 we performed four repetitions instead of three, and ignored the data from the second repetition”). If you’ve done it right, another researcher should be able to duplicate your experiment. 6. Results are usually dominated by calculations, tables and figures; however, you still need to state all significant results explicitly in verbal form, for example:

Quick Results Reference

  • Number and Title tables and graphs
  • Use a sentence or two to draw attention to key points in tables or graphs
  • Provide sample calculation only
  • State key result in sentence form
Using the calculated lattice parameter gives, then, R = 0.1244nm.

Graphics need to be clear, easily read, and well labeled (e.g. Figure 1: Input Frequency and Capacitor Value). An important strategy for making your results effective is to draw the reader’s attention to them with a sentence or two, so the reader has a focus when reading the graph.

In most cases, providing a sample calculation is sufficient in the report. Leave the remainder in an appendix. Likewise, your raw data can be placed in an appendix. Refer to appendices as necessary, pointing out trends and identifying special features. 7. Discussion is the most important part of your report, because here, you show that you understand the experiment beyond the simple level of completing it. Explain. Analyse. Interpret. Some people like to think of this as the “subjective” part of the report. By that, they mean this is what is not readily observable. This part of the lab focuses on a question of understanding “What is the significance or meaning of the results?” To answer this question, use both aspects of discussion:

More particularly, focus your discussion with strategies like these:

Compare expected results with those obtained.

If there were differences, how can you account for them? Saying “human error” implies you’re incompetent. Be specific; for example, the instruments could not measure precisely, the sample was not pure or was contaminated, or calculated values did not take account of friction.

Analyze experimental error.

Was it avoidable? Was it a result of equipment? If an experiment was within the tolerances, you can still account for the difference from the ideal. If the flaws result from the experimental design explain how the design might be improved.

Explain your results in terms of theoretical issues.

Often undergraduate labs are intended to illustrate important physical laws, such as Kirchhoff’s voltage law, or the Müller-Lyer illusion. Usually you will have discussed these in the introduction. In this section move from the results to the theory. How well has the theory been illustrated?

Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, you’d better know the metal and its attributes.

Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not to change your answer, but to look for any anomalies between the groups and discuss those.

Analyze the strengths and limitations of your experimental design.

This is particularly useful if you designed the thing you’re testing (e.g. a circuit). 8. Conclusion can be very short in most undergraduate laboratories. Simply state what you know now for sure, as a result of the lab:

Quick Conclusion Reference

  • State what’s known
  • State significance
  • Suggest further research
Example: The Debye-Sherrer method identified the sample material as nickel due to the measured crystal structure (fcc) and atomic radius (approximately 0.124nm).

Notice that, after the material is identified in the example above, the writer provides a justification. We know it is nickel because of its structure and size. This makes a sound and sufficient conclusion. Generally, this is enough; however, the conclusion might also be a place to discuss weaknesses of experimental design, what future work needs to be done to extend your conclusions, or what the implications of your conclusion are. 9. References include your lab manual and any outside reading you have done. Check this site’s documentation page to help you organize references in a way appropriate to your field. 10. Appendices typically include such elements as raw data, calculations, graphs pictures or tables that have not been included in the report itself. Each kind of item should be contained in a separate appendix. Make sure you refer to each appendix at least once in your report. For example, the results section might begin by noting: “Micrographs printed from the Scanning Electron Microscope are contained in Appendix A.”

To learn more about writing science papers, visit our handout on writing in the sciences .

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.


What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

27.5: Guide for writing a lab report

  • Last updated
  • Save as PDF
  • Page ID 19582

Write a few short sentences briefly summarizing what you did, how you did it, what you found and whether anything went wrong in your experiment.

Describe relevant theories that relate to your experiment here, and the steps to carry out your procedure.

Consider the following questions:

  • What are the relevant theories/principles that you used?
  • What equations did you use? Show how you modeled your experiment.
  • What materials, equipment and/or tools were necessary in making your measurements?
  • Where was this experiment conducted?
  • How did you make your measurements? How many times did you make them?
  • How did you record your measurements?
  • How did you determine and minimize the uncertainties in your measurements? Why did you choose to measure a specific quantity in a certain way?

It can be useful to predict the value (and uncertainty) that you expect to measure before conducting the measurement. You should report on this initial prediction in order to help you better understand the data from your experiment.

  • Predict your measured values and uncertainties. How precise do you expect your measurements to be?
  • What assumptions did you have to make to predict your results?
  • Have these predictions influenced how you should approach your procedure? Make relevant adjustments to the procedure based on your predictions.

Data and Analysis

Present your data. Include relevant tables/graphs. Describe in detail how you analysed the data, including how you propagated uncertainties. If the data do not agree with your model prediction (or the prediction from your proposal), examine whether you can improve your model.

  • How did you obtain the “final” measurement/value from your collected data?
  • How did you propagate uncertainties? Why did you do it that way?
  • What is the relative uncertainty on your value(s)?

Discussion and Conclusion

Summarize your findings, and address whether or not your model described the data. Discuss possible reasons why your measured value is not consisted with your model expectation (is it the model? is it the data?).

  • Were there any systematic errors that you didn’t consider?
  • Did you learn anything that you didn’t previously know? (eg. about the subject of your experiment, about the scientific method in general)
  • If you could redo this experiment, what would you change (if anything)?

Guide for reviewing a lab report

Summarize your overall evaluation of the report in 2-3 sentences. Focus on the experiment’s method and its result. For example, “The authors dropped balls from different heights to determine the value of g”. You don’t need to go into the specific details, just give a high level summary of the report. If the report is unclear, specify this.

  • Is the the procedure well thought-out, clearly and concisely described?
  • Do you have sufficient information that you could repeat this experiment?
  • Does the report clearly describe how different quantities were measured and how the uncertainties were determined?
  • Does the report motivate why the specific procedure was chosen? (e.g. to minimize uncertainties).
  • Does the experiment clearly state how uncertainties were propagated and how the data were analyzed?
  • Do you believe their result to be scientifically valid?

Overall Rating of the Experiment

Give the report an overall score, based on the criteria described above. Use one of the following to rate the proposal and include a sentence to justify your choice.

  • Satisfactory
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Science Writing

How to Write a Scientific Lab Report: Basic Format & Key Parts

Last Updated: March 12, 2024 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 152,725 times.

If you've just finished an experiment in your physics class, you might have to write a report about it. This may sound intimidating, but it's actually a simple process that helps you explain your experiment and your results to your teacher and anyone else who is interested in learning about it. Once you know what sections to include in your report and what writing techniques to use, you'll be able to write a great physics lab report in no time.

Including the Proper Sections

Step 1 Start with a cover sheet.

  • Your name and the name of your partner(s)
  • The title of your experiment
  • The date you conducted the experiment
  • Your teacher's name
  • Information that identifies which class you are in

Step 2 Include an abstract.

  • Keep your abstract brief and note the purpose of the experiment, the hypothesis, and any major findings.

Step 3 Consider adding an introduction.

  • If a diagram will help your audience understand your procedure, include it in this section.
  • You may be tempted to write this as a list, but it's best to stick to paragraph form.
  • Some teachers may require a separate section on the materials and apparatuses that were used to conduct the experiment.
  • If you are following instructions from a lab book, do not just copy the steps from the book. Explain the procedure in your own words to demonstrate that you understand how and why you are collecting each piece of data.

Step 6 Include your raw data.

  • You may include graphs or charts that highlight the most important pieces of data here as well, but do not begin to analyze the data quite yet.
  • Explain any reasonable uncertainties that may appear in your data. No experiment is completely free of uncertainties, so ask your teacher if you're not sure what to include.
  • Always include uncertainty bars in your graphs if the uncertainties of the data are known.
  • Also discuss any potential sources of error and how those errors may have affected your experiment.

Step 7 Provide sample calculations.

  • Some teachers may allow you to include your calculations in the data section of our report.

Step 8 Analyze your data and state your conclusion.

  • Include information about how your results compare to your expectations or hypothesis, what implications these results have for the world of physics, and what further experiments could be conducted to learn more about your results.
  • You can also include your own ideas for improving upon the experiment.
  • Be sure to include any graphs that would be appropriate to illustrate your analysis of the data and help your readers better understand it. [8] X Research source
  • Some teachers may request that you create two separate analysis and conclusion sections.

Using the Correct Writing Techniques

Step 1 Use full sentences and proper grammar.

  • Bullet pointed lists are not appropriate for most sections of your report. You may be able to use them for short sections like your materials and apparatuses list.
  • Keep in mind that one of the main objectives of your lab report is to guide others in recreating your experiment. If you can't clearly explain what you did and how you did it, no one will ever be able to reproduce your results.

Step 2 Focus on clarity.

  • Active sentences are usually easier to understand than passive sentences, so try to minimize your use of the passive voice whenever possible. For example, if you wrote, "These results are easily reproducible by anyone who has the correct equipment," try changing it to "Anyone who has the correct equipment should be able to reproduce these results." The passive voice is not always wrong, so don't be afraid to leave a sentence in the passive voice if you think it makes more sense that way.

Step 3 Stay on topic.

  • Don't jump ahead and discuss the results of the experiment before you get to that section. Just because you understand everything that happened with your experiment, does not mean your readers will. You need to walk them through it step by step.
  • Cut out any sentences that don't add anything of substance to your report. Your readers will only get frustrated if they have to read through a bunch of fluff in order to find your main point.

Step 4 Stick to the third person.

  • For example, instead of writing, "I noticed that the data we gathered was not consistent with our previous results," write, "The data is not consistent with the previous results."
  • It may be tricky to maintain active voice when writing in third person, so it’s okay to use passive voice if it makes more sense to do so.

Step 5 Write in the present tense.

  • The past tense is appropriate for discussing your procedure and the results of past experiments.

Step 6 Include headings and labels.

Community Q&A

Community Answer

  • Try not to make your sentences too long or difficult. Even complex information can be written out in a way that is easy to understand. Thanks Helpful 8 Not Helpful 0
  • Your teacher may have a slightly different way of breaking up the sections, so it's always a good idea to ask. Be sure to include any additional sections that your teacher specifically requests. Thanks Helpful 5 Not Helpful 0
  • If there were multiple parts to your experiment, you might want to consider doing a mini report for each section so your readers can easily follow along with your data and results for each part before moving on to the next one. Thanks Helpful 1 Not Helpful 0

how to write lab report example

You Might Also Like

Write a Good Lab Conclusion in Science

  • ↑
  • ↑
  • ↑
  • ↑
  • ↑
  • ↑

About This Article

Bess Ruff, MA

To write a physics lab report, start by putting together a cover sheet with your name, and the title and date of the experiment. Then, include an abstract, or summary of your report, followed by your objective, procedures, and methods. After you’ve talked about how the experiment was conducted, present your raw data, and provide any important calculations used with the data. Next, write an analysis of your data, and a conclusion to explain what you've learned. Finally, complete the report by writing up your references. For tips from our Science reviewer on how to make your report sound as professional as possible, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Aisha Awwal

Aisha Awwal

Jan 8, 2022

Did this article help you?

Mandila Noah

Mandila Noah

Sep 27, 2017

Martin A.

Apr 25, 2017

Kia Sparkle

Kia Sparkle

Sep 20, 2017

Emmanuel Sirmah

Emmanuel Sirmah

Nov 1, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

Convince Your Parents

Trending Articles

8 Reasons Why Life Sucks & 15 Ways to Deal With It

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing the Experimental Report: Overview, Introductions, and Literature Reviews

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Written for undergraduate students and new graduate students in psychology (experimental), this handout provides information on writing in psychology and on experimental report and experimental article writing.

Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of your research, what your results mean, and how they fit into other previous work.

These next two sections provide an overview of the experimental report in APA format. Always check with your instructor, advisor, or journal editor for specific formatting guidelines.

General-specific-general format

Experimental reports follow a general to specific to general pattern. Your report will start off broadly in your introduction and discussion of the literature; the report narrows as it leads up to your specific hypotheses, methods, and results. Your discussion transitions from talking about your specific results to more general ramifications, future work, and trends relating to your research.

Experimental reports in APA format have a title page. Title page formatting is as follows:

  • A running head and page number in the upper right corner (right aligned)
  • A definition of running head in IN ALL CAPS below the running head (left aligned)
  • Vertically and horizontally centered paper title, followed by author and affiliation

Please see our sample APA title page .

Crafting your story

Before you begin to write, carefully consider your purpose in writing: what is it that you discovered, would like to share, or would like to argue? You can see report writing as crafting a story about your research and your findings. Consider the following.

  • What is the story you would like to tell?
  • What literature best speaks to that story?
  • How do your results tell the story?
  • How can you discuss the story in broad terms?

During each section of your paper, you should be focusing on your story. Consider how each sentence, each paragraph, and each section contributes to your overall purpose in writing. Here is a description of one student's process.

Briel is writing an experimental report on her results from her experimental psychology lab class. She was interested in looking at the role gender plays in persuading individuals to take financial risks. After her data analysis, she finds that men are more easily persuaded by women to take financial risks and that men are generally willing to take more financial risks.

When Briel begins to write, she focuses her introduction on financial risk taking and gender, focusing on male behaviors. She then presents relevant literature on financial risk taking and gender that help illuminate her own study, but also help demonstrate the need for her own work. Her introduction ends with a study overview that directly leads from the literature review. Because she has already broadly introduced her study through her introduction and literature review, her readers can anticipate where she is going when she gets to her study overview. Her methods and results continue that story. Finally, her discussion concludes that story, discussing her findings, implications of her work, and the need for more research in the area of gender and financial risk taking.

The abstract gives a concise summary of the contents of the report.

  • Abstracts should be brief (about 100 words)
  • Abstracts should be self-contained and provide a complete picture of what the study is about
  • Abstracts should be organized just like your experimental report—introduction, literature review, methods, results and discussion
  • Abstracts should be written last during your drafting stage


The introduction in an experimental article should follow a general to specific pattern, where you first introduce the problem generally and then provide a short overview of your own study. The introduction includes three parts: opening statements, literature review, and study overview.

Opening statements: Define the problem broadly in plain English and then lead into the literature review (this is the "general" part of the introduction). Your opening statements should already be setting the stage for the story you are going to tell.

Literature review: Discusses literature (previous studies) relevant to your current study in a concise manner. Keep your story in mind as you organize your lit review and as you choose what literature to include. The following are tips when writing your literature review.

  • You should discuss studies that are directly related to your problem at hand and that logically lead to your own hypotheses.
  • You do not need to provide a complete historical overview nor provide literature that is peripheral to your own study.
  • Studies should be presented based on themes or concepts relevant to your research, not in a chronological format.
  • You should also consider what gap in the literature your own research fills. What hasn't been examined? What does your work do that others have not?

Study overview: The literature review should lead directly into the last section of the introduction—your study overview. Your short overview should provide your hypotheses and briefly describe your method. The study overview functions as a transition to your methods section.

You should always give good, descriptive names to your hypotheses that you use consistently throughout your study. When you number hypotheses, readers must go back to your introduction to find them, which makes your piece more difficult to read. Using descriptive names reminds readers what your hypotheses were and allows for better overall flow.

In our example above, Briel had three different hypotheses based on previous literature. Her first hypothesis, the "masculine risk-taking hypothesis" was that men would be more willing to take financial risks overall. She clearly named her hypothesis in the study overview, and then referred back to it in her results and discussion sections.

Thais and Sanford (2000) recommend the following organization for introductions.

  • Provide an introduction to your topic
  • Provide a very concise overview of the literature
  • State your hypotheses and how they connect to the literature
  • Provide an overview of the methods for investigation used in your research

Bem (2006) provides the following rules of thumb for writing introductions.

  • Write in plain English
  • Take the time and space to introduce readers to your problem step-by-step; do not plunge them into the middle of the problem without an introduction
  • Use examples to illustrate difficult or unfamiliar theories or concepts. The more complicated the concept or theory, the more important it is to have clear examples
  • Open with a discussion about people and their behavior, not about psychologists and their research


  • Other Guides
  • How to Write a Lab Report: Definition, Outline & Template Examples
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing


  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

How to Write a Lab Report: Definition, Outline & Template Examples


Table of contents


Use our free Readability checker

A lab report  is a document that provides a detailed description of a scientific experiment or study. The purpose of a lab report is to communicate the results of experimentation in a clear and objective manner. It typically includes sections such as introduction, methods, results, discussion, conclusion, and references.

In this blog post, you can find lots of helpful information on writing a lab report and its basics, including such questions:

  • What are lab reports?
  • Howto create an outline and structure reports?
  • How to write a lab report?
  • How to format your report?
  • Some extra tips and best practices to take into account.

Several exemplary laboratory report samples are also offered in this article. You are welcome to use them as an inspiration or reference material.  Need expert help? Contact our academic service in case you are looking for someone who can “ write my lab report .”

What Is a Lab Report?

Let’s start with the lab report definition and then dive deeper into details. A lab report is a document in which you present results of a laboratory experiment. Your audience may include your tutor or professor, your colleagues, a commission monitoring your progress, and so on. It’s usually shorter than a research paper and shows your ability to conduct and analyze scientific experiments.

Lab Report Definition

The purpose of a laboratory report is to fully share the results and the supporting data with whoever needs to see them. Thus, your laboratory report should be consistent, concise, and properly formatted. Both college and scientific lab reports must follow certain strict rules, particularly:

  • Use valid research data and relevant sources
  • Include enough information to support assumptions
  • Use formal wording appropriate for scientific discussions.

Let’s talk about these rules in more detail.

Lab Report Main Features

Wondering how to write a lab report ? First of all, such documents must be descriptive and formal. An average scientific lab report is expected to:

  • Display your own research results
  • Contain assumptions, proving or disproving some hypotheses
  • Present the evidence (lab data, statistics, and calculations) in a comprehensive manner
  • Be logical and concise.

Additionally, your school or institution may have its own very specific requirements, so make sure to check them before creating a report.

How Long Should a Lab Report Be?

First of all, lab reports need to be informative, so there is no need for making your writing too wordy. That being said, your paper’s volume will be defined by the specifics of your research. If its results are complicated and require much explaining, your paper isn’t going to be brief. Recommended lab report length varies between 5 and 10 pages, which should include all appendices such as tables or diagrams. You should also confirm such requirements with your tutor prior to planning your report.

Lab Report Structure

Plan ahead before writing your lab report. It is useful to keep its structure in mind from the very beginning. 

Lab Report Structure

Here is our detailed list of what to include in a lab report:

  • Title Page The first page must only include the experiment’s title along with its date, your name, your school’s name, and your professor’s name. All further descriptions and explanations should appear on the next pages.
  • Title Give a meaningful heading to your lab paper, so that it would help readers understand the basic purpose of your experiment and its background. However, don’t make it longer than 10 words.
  • Abstract This part is a formal summary of your lab experiment report. Provide all essential details here: what was the purpose of your research, why it was important, and what has been found and proven as a result of your controlled experiment . Keep it short, from 100 to 200 words.
  • Introduction Here you should provide more details about the purpose and the meaning of your research, as well as the problem definition. Related theories or previous findings can also be mentioned here. Particularly, you can refer to your previous lab reports on the same subject.
  • Methods An approach to solving selected problems is a critical part of a science lab report. You need to explain what methods you use and why they are optimal in this specific situation.
  • Procedure Provide a detailed explanation of all steps, measurements, and calculations you’ve performed while researching. Don’t forget about the chronology of these actions because this can be of crucial importance.
  • Results After you’ve described all the steps of your research process, present its results in an orderly fashion. It should be clear from your laboratory report how exactly they were obtained and what their meaning is.
  • Discussion In most cases any data derived from experiments can be interpreted differently and thus varying conclusions can be drawn. A scientific lab report must address such nuances and explain all assumptions its author has made.
  • Conclusion The lab report is expected either to confirm or to refute some hypotheses. Conclude your paper with clearly showing what has been proven or disproven based on your research results.
  • References As a scholarly work, your report must use valid sources for analysis and discussion of the results. You should provide proper references for these sources each time you are using certain data taken from them.
  • Graphs, Tables and Figures It is important to illustrate your findings when writing lab reports. The data you’ve obtained may be obvious for you, but not for your readers. Organize it into tables,  flow chart , or schemas and put these illustrative materials at the end of your lab report paper as appendices.

You should shape the structure of a lab report before writing its complete text by preparing a brief write-up, i.e. an outline. Below we’ll explain how it is done.

Lab Report Outline & Template

Preparing lab report outlines is useful for extra proofreading: you can review such a sketch and quickly find some gaps or inconsistencies before you’ve written the complete text. A good laboratory report outline must reflect the entire structure of your paper. After designing such a draft, you can use it as a lab report template for your next papers. It is highly advisable not to ignore this approach since it can boost your general academic performance in multiple other areas. Here is an example of a science lab report template:

Lab Report Outline Example

How to Write a Lab Report Step-By-Step?

Now, let’s discuss how to write a scientific lab report. You already know what elements it contains, so get ready for detailed laboratory report guidelines. We’ve collected helpful information for each step of this guide and broke it down into comprehensive sections. So, scroll down and learn how to write a good lab report without experiencing extra pains and making unnecessary mistakes.

How to Write a Lab Report in 9 Steps

1. Create a Strong Title

Before you write your lab report, think about a good title. It should help understand the direction and the intent of your research at the start, while not being too wordy. Make sure it is comprehensible for your tutor or peers, there is no need to explain certain specific terms because others are expected to know them. Here are several examples that could give you some ideas on how to name your own lab write up:

•  Effects of temperature decrease on Drosophila Melanogaster lifespan •  IV 2022 marketing data sample analysis using the Bayesian method •  Lab #5: measurement of fluctuation in 5 GHz radio signal strength •  Specific behavioral traits of arctic subspecies of mammals.

Also, check our downloadable samples for more great title suggestions or use our Title Generator to create one. 

2. Introduce Your Experiment

A good scientific lab report should contain some explanations of what is the meaning of your experiment and why you conduct it in the first place. Provide some context and show why it is relevant. While your professor would be well aware of it, others who might read your laboratory report, may not know its purpose. Mention similar experiments if necessary. As usual, keep it short but informative. One paragraph (100 – 150 words) would suffice. Don’t provide too many details because this might distract your readers. Here is an example of how a science lab report should be introduced:

Lower temperatures decrease the drosophila flies’ activity but also increase their lifespan. It is important to understand what temperature range is optimal, allowing them to feed and multiply and at the same time, increasing their lifespan to maximum. For this purpose, a strain of Drosophila Melanogaster has been observed for 3 months in an isolated lab under varying temperatures.

3. State the Hypothesis

When learning how to make a lab report, pay a special attention to the hypothesis part. This statement will be the cornerstone of your lab writing, as the entire paper will be built around it. Make it interesting, relevant, and unusual, don’t use well-researched topic or state obvious facts - exploring something really new is what makes your work worth time and effort. Here is an example of statement for your lab report sample:

The temperature of 75 degrees Fahrenheit is optimal for Drosophila Melanogaster longevity and ability to multiply while being at a lower border of their normal zone of comfort.

4. Present the Methods and Materials

One of the key parts of a lab report is the section where you describe your assets and starting conditions. This allows any reviewers to understand the quality of your work and thus contributes to the credibility of your scientific lab write up. The following elements must be mentioned:

  • Research subjects E.g. raw data samples you analyze or people you interview.
  • Conditions Your experiment must be limited to certain space, time period or domain; and the factors influencing your independent and dependent variables need to be mentioned as well.
  • Methods You are expected to follow specific rules (e.g. from your lab manual) when analyzing your subjects and calculating your analysis results.
  • Materials Mention all tools and instruments employed to collect data and name each item model.

More lab report writing tips available below, so let’s keep on!

5. Explain Procedures

The core part of a lab report is describing the course of the experiment. This is where you explain how exactly the experiment has been conducted. Give all necessary information about each step you’ve taken, arranging all the steps in proper chronological order so that readers could clearly understand the meaning behind each action. The following procedure elements may be present in an experimental report:

  • Processing raw data
  • Observing processes
  • Taking measurements
  • Making calculations
  • Observing trends
  • Comparing calculation results to other researchers’ results or to some reference values, etc.

After you have finished describing your actions, it is time to summarize them, answer all remaining questions, and present your findings. Check out other tips on how to write lab reports in a few sections below and you’ll learn more about that. Need professional help? Buy lab reports at our writing service to get efficient solutions in a timely manner.

6. Share Your Results

After all the lab steps have been properly described, it is time to present the outcomes in your results section . Writing a good lab report means that it will be quite transparent for your reviewers how you’ve come to your results. So, make sure there is a clear connection between this part and the previous one. Don’t leave any gaps in your explanations, e.g. mention limitations if there are any. Tell if the captured statistical analysis data falls in line with the experiment's initial purpose. Describe sample calculations using clear symbols. Where necessary, include graphs and images. Your raw data may be extensive, so present it in the Appendix and provide a reference to it. Here’s an example of how to share the results when you create a lab report:

Average lifespan and average birth rate was measured for each group subjected to a different temperature range. Additionally, statistical methods have been applied to confirm the correctness of the results and to minimize potential errors. Lifespan and birth rate values corresponding to each temperature range can be found in the table below. Optimal combination of lifespan and birth rate corresponds to the range between 75 and 76 degrees Fahrenheit, as demonstrated by the figure (see Appendix A).

7. Discuss and Interpret Your Outcomes

When you write an experiment report, your main purpose is to confirm whether your thesis  (hypothesis) is true. That’s why you should give a clear explanation on how useful your results were for the problem investigation. Next, make sure to explain any dubious or controversial parts, if there are any. Science lab reports often contain contradictions to popular theories or unexpected findings. This may be caused by missing important factors, uncovering facts which have previously been overlooked, or just by fluctuations in experimental data. In any case, you need to study and address them in your lab report for the sake of clarity. If you need some data interpretation in a science lab report example, here’s an excerpt from a discussion section :

According to the research results, the optimal temperature for Drosophila Melanogaster appears to be at the low border of the comfortable range which is considered normal for this species. It contradicts existing theories about Drosophila Melanogaster. However, this discrepancy may be caused by the longevity factor not taken into account by previous researchers. Additional experiments with larger sample size and extended timeline are needed in order to further investigate the temperature effect on the longevity of Drosophila Melanogaster.

8. Wrap Up Your Lab Report

Final step of your laboratory report is to make a proper conclusion. Here you just summarize your results and state that your hypothesis has been confirmed (or disproven). Keep it short and don’t repeat any descriptions from the previous section. However, you may add some notes about the significance of your work. After finishing to write your lab report, don’t forget to read it again and check whether all its parts are logically connected with each other. Here is an example of a lab report last section:

As confirmed by the experiment conducted in an isolated laboratory on a limited population of Drosophila Melanogaster, the optimal temperature for both its longevity and activity is 75 and 76 degrees Fahrenheit. Certain contradictions with the existing theories can be explained by the longevity factor being overlooked during previous research. Hopefully, this experiment will pave the way for further exploration of the temperature effect on the lifespan of Drosophila Melanogaster.

9. Write Your Abstract

Another stage of lab report writing is composing its abstract. This part should be placed at the beginning of your paper in order to get your audience familiar with its contents. Make it brief, up to 200 words long, but make sure you’ve included the following information:

  • Problem statement description
  • Overview of materials, methods, and procedures

Abstracts of laboratory reports are delivered on separate pages. So, you can compose one after writing the entire text. This is another good chance to review your work while you are briefly describing its key parts. Check our detailed guide to get more information on how to write an abstract . Check below for more tips and hints on how to write a science lab report.

Lab Report Format

Learning how to format a lab report is crucial for its success. As all other scholarly papers, such reports must follow strict rules of presenting information. Make sure to find out which laboratory report format is required for your assignment. If there are no specific requirements, you may choose from the usual lab format styles, namely:

Depending on the scientific domain of your experiment, you might want to choose one or another lab write up format from that list. Particularly, the APA style paper is typically required in Humanities , while MLA style can be used for papers in Technologies or Applied Science . In any case, pay close attention to citation and reference rules, as each of these styles has strict requirements for that. A real lab report format example can be found below – note that it follows the APA guidelines.

Lab Report Examples

Need some good examples of lab reports in addition to all these guidelines? We’ve got some for you! Each sample lab report that can be found below is available for free and can be downloaded if needed. Feel free to use them as an inspiration for your own work or borrow some ideas, styles, or sources from them. Pick a laboratory reports sample from this list below: Lab report example 1


Example of lab report 2

Scientific lab report example 3

Please avoid copying anything from them into your paper as that would be considered plagiarism . Make sure you submit 100% original text for your assignments.

Tips on Writing a Lab Report

We hope this detailed information on how do you write a lab report will be useful. In addition, to make our guide even more convenient, here are some quick lab report writing tips:

  • Think things through before starting your research. Do you have enough data for it and can you organize appropriate conditions and equipment for conducting experiments?
  • Don’t skip writing the sketch version first. Outlines help to form lab reports layout and avoid logical gaps.
  • Take notes while conducting your experiment – unfortunately, it’s very easy to forget important details when you describe it later.
  • Double check yourself when making calculations. The more complicated they are, the more error-prone your entire report is.
  • Pick your sources carefully. You should only use valid and peer-reviewed scientific materials to retrieve empirical and theoretical information from.
  • Properly refer to each and every source you’ve used. Your lab writeup format is very important for your grades.
  • Pay attention to discussing weak points of your report. Try refuting your own results and hypothesis and see how you can counter that using actual data.
  • Maintain a formal tone and keep it straightforward. Don’t be too wordy and avoid providing irrelevant details.
  • Review your completed report several times, paying attention to layouts of different sections. If possible, ask some peer students or colleagues to do it for you – they might notice some missing details or weak assumptions.

Don’t forget to check our laboratory report example for more useful ideas.

Lab Report Checklist

Let’s summarize all the above information on how to do a lab report. We’ve prepared a short checklist for you. So, here’s what you should do in order to compose a great science lab report:

Bottom Line on Lab Report Writing

In this article, we have prepared all necessary information on how to write a lab report. This should help you with your own research or studies, especially when it comes to complicated tasks, such as composing lab reports outline. Several lab reports examples are also available here. They are provided by real researchers and may help you a lot with ideas for your own work. Feel free to check them online or download them. Just remember that you should only submit 100% original content for your assignments.


Connect with our academic writing service and say ‘ write my college paper .’ With our help, you will receive papers of great quality and will never miss your deadline.

FAQ About Lab Reports

1. what is the difference between a lab report and a research paper.

A lab report should showcase your ability to conduct experiments and properly describe your actions and findings. It is focused on specific data and methods used to analyze it. A research paper is expected to reflect your investigation of a problem, including asking correct questions and finding relevant information about it.

2. Should I continue to write a lab report if an experiment failed?

It depends on your assignment. If your primary goal is to display your ability to document your steps and results, then you may report on a failed experiment too. Particularly, analyze the integrity of your data or conditions that were set and make an assumption about factors which led to the failure.

4. Should lab reports be written in the third person?

Yes, laboratory experiment reports usually present information in third person. The reason is that you are expected to focus on the data, methods, and findings, rather than on yourself or your audience. Check the samples available here and see what writing style is followed there.

3. What tense should a lab report be written in?

You should mostly use past tense in your paper, since your science experiment has already been conducted. But you can also speak in present tense when describing the context of problems which still exist. Check any template available here to get more clarity on this issue.

5. Where do I put calculations in a lab report?

Remember to follow our layout guidelines and put your calculations in the analysis section. This is where you process the results collected during your experiments. You can also make brief write ups about your calculations in the abstract paragraph or discussion section, but make sure they precede the description of outcomes.


Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

How to Write a Process Analysis Essay

  • checkbox I completed all calculations on the experimental data and properly analyze my results.
  • checkbox I sketched my lab report layout by preparing its outline.
  • checkbox My thesis statement is strong.
  • checkbox I provided enough context in my intro.
  • checkbox I described methods, materials, and procedures in detail.
  • checkbox I conducted proper analysis, including all my calculations and assumptions in it.
  • checkbox I created illustrative materials if needed: tables, charts, figures etc.
  • checkbox All outcomes are discussed without omitting any of their weaknesses.
  • checkbox I wrote a brief but informative conclusion and show how the initial hypothesis has been confirmed or rejected.
  • checkbox I reviewed my laboratory report once again and wrote an abstract.
  • checkbox The title page and appendices are added.

Chemistry Hall

Chemistry hall – from cutting-edge research highlights to educational resources.

Chemistry Hall From Cutting-Edge Research Highlights to Home Chemistry Experiments

How to Write the Perfect Chemistry Lab Report: A Definitive Guide

February 11, 2020 By Guest Posts Leave a Comment

Students have to deal with multiple academic tasks, and writing lab reports (lots of them!) is one of them. Its main purpose is to explain what you did in your experiment, what you learned and what the results meant.

Performing experiments and reporting them properly is a cornerstone of on your way into learning chemistry .

But how do you write a chemistry lab report properly?

It’s now time to find out!

writing a chemistry lab report for an experiment

Our ultimate guide sheds light on the main parts of lab report writing. You ought to be aware of every section and understand how to complete them properly. Therefore, we have divided our guide into three major sections that are:

  • Parts of the lab report;
  • A step-by-step review;
  • Writing your project.

General Information

It’s necessary to begin with an overview of the main sections that should be present on a laboratory report for chemistry.

Mind that sometimes these sections are called differently but have the same purpose. Some of the sections may be missing, but the general structure should be close to this. Everything depends on the educational institution.

It is important to know that usually lab reports are written after the lab session is finished . This means that you need to have everything previously recorded in your lab notebook . You are supposed to keep track of everything you do in the lab in your laboratory notebook, and then using that notebook to write down your lab report, not the other way around.

Reviewing Every Step

Now, we’d like to go through the main stages of a chemistry lab report. It’s necessary to add brief comments concerning each of them. Your laboratory report begins with a title page. You already know what it consists of. Let’s check how to compose it correctly. The information must be presented on the upper right-hand side of the page. All the points (the title, your name, collaborators, etc.) should be mentioned on the separate line.

Afterward comes the second part, which includes:

  • The course title
  • Title of the experiment
  • Title of the parts within the experiment
  • Semester, year, etc. (optional)

This data appears in the middle of the title page.

The next section is the Introduction and it begins with this word in the left upper corner of your report. It should consist of no more than a couple of paragraphs and end with at least one hypothesis.

The body of your project consists of the procedure, materials and methods employed; data; results and observations.  The section Procedure commonly consists of several steps that were followed for the proper conduction of the experiment(s). They could be divided in different parts, and those would describe your actions.

The section Data contains the numerical facts and Observations that provide the changes that took place. Afterwards, you move to the Discussions, in which you ought to plainly explain all the numbers, observations and collected data. Your conclusions provide an overall summary of the entire lab report, and the whole experimental session itself.

Writing a Chemistry Lab Report

The last lap in our “race” is to write a laboratory report . We have already mentioned the main constituents of the title page. Therefore, we can hit the text of your project. Your abstract appears soon after the title page. An abstract is a quick summary that sums up the whole thing (hypothesis to be proven, and conclusions that are reached). Nonetheless, you should leave some space and skip it until the entire project is finished. It is recommended to write the abstract last. The main point is that this section provides a brief review of what your lab report is about and what you’ve managed to achieve.

Main Sections

The introductory part tells your readers what to expect from the project. Write a couple o paragraphs and explain the purpose of your experiment. Including references here is also highly encouraged. The last sentence of your introduction is called a hypothesis or a thesis statement. It shows what you hope to achieve at the end of your research.

The main body consists of several parts and of course, each has its purpose. You should introduce the materials and methods you need to conduct the research. Explain your choice and how your choice helps to conduct a safe and accurate study.

Take instant records of everything that happens during the experiment in your lab notebook . Never rely on your memory!

Afterwards, you’ll interpret the data and explain it using plain words. Don’t draw any conclusions when you record data and don’t explain it in the section called Results. This function should be fulfilled in the sections Discussions or Analysis sections, which should come right afterwards.

Your conclusion makes a brief summary. It should consist of 3-4 sentences, not many more. Restate your hypothesis in other words. Mention whether you’ve achieved your initial goal and explain its value.

Importantly, do realize that if a hypothesis cannot be proven, or an experiment doesn’t give you the results you expected, it doesn’t mean that your experiment and lab session was a failure. It is extremely common in chemistry to find yourself on this kind of situations! You only need to be able to explain why you got the results that you got, and how would you go around to fix them!

Further Sections on Your Report

Don’t forget about the contributors (labmates, supervisiors…) to your research.

You should also obligatorily use some secondary sources to support your theory. Therefore, you have to cite and make references according to the assigned writing format. You can reference other articles all over your manuscript (especially in the introduction and discussion sections), but don’t forget to put them together (or at the bottom of each page), and cite them properly.

The final step is to proofread your lab report. You’re free to use reading aloud and in your head, reading everything again, and using special grammar and spelling checking applications.

To sum up, keep in mind all these guidelines when you’re assigned to write a lab report. Thus, you’ll never miss something important, which can cost you essential grades. Write each section properly to receive the highest grades for your experiment. Always be clear, cite the appropriate references, and be objective with your analysis and conclusions!

Related Posts:

The Best Chemistry Books for Self-Study in 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .


Privacy overview.

how to write lab report example


  1. 40 Lab Report Templates & Format Examples ᐅ TemplateLab

    how to write lab report example

  2. FREE 12+ Sample Lab Reports in Google Docs

    how to write lab report example

  3. 6 Sample Lab Report Templates

    how to write lab report example

  4. How to Write a Lab Report Lab Reports Describe Your Experiment

    how to write lab report example

  5. 40 Lab Report Templates & Format Examples ᐅ TemplateLab

    how to write lab report example

  6. Free Printable Lab Report Templates [PDF, Word]

    how to write lab report example



  2. How to write science laboratory report

  3. Lab Report Writing Instructions EEE 1102/EEE 1104

  4. Lab Work : How To Write A Good Materials & Metallurgical Engineering Lab Report

  5. How to write your practical chemistry lab report effectively for high marks

  6. Science Lab Report/Report Writing/How to Write Science Report?


  1. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  2. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  3. Complete Guide to Writing a Lab Report (With Example)

    Abstract. Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice.

  4. Writing a Lab Report: Best Approach, Steps, Templates & Layouts

    A lab report writing guide provides a comprehensive framework to help you navigate the process of creating a well-structured and informative lab report. So, this guide will provide you with a step-by-step guide on how to write a laboratory report, including tips on structure, content, and style.

  5. How to Write a Lab Report: Step-by-Step Guide & Examples

    Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers. A simple way to write your reference section is to use Google scholar. Just type the name and date of the psychologist in the search box and click on the "cite" link. Next, copy and paste the APA reference into the ...

  6. Library Research Guides: STEM: How To Write A Lab Report

    Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. Title.

  7. How to Write a Lab Report: Examples from Academic Editors

    Lab Report Example & Templates a. Basic Lab report template. b. Chemistry lab report example. c. Example of good labeling . The above examples accurately demonstrate the hallmarks of a good lab report. If you need help to perfect your lab report, you can consider taking our editing and proofreading services. Keep reading to perfect your writing ...

  8. Scientific Reports

    What this handout is about. This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach ...

  9. Lab Report Format

    A lab report should be: Concise: Cover all the key points without getting crazy with the details. Objective: In the "Conclusions" section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.

  10. PDF A Basic Guide to Writing a Successful Laboratory Report

    Introduction. Being a successful engineer requires more than simply being able to successfully run an experiment or execute a computation. The ability to convey information in a clear and concise manner is equally important. This document provides a guideline to writing meaningful reports that communicate data obtained in an experimental setting.

  11. How to Write a Lab Report

    For any lab report, use a professional font and size. For example, 12-point Times New Roman. Double-space the report. Include a page number, usually either in the top or bottom right corner of each page. Clearly separate specific sections of the report with headings and subheadings.

  12. PDF Biology Lab Report Sample

    Created by Writing Center tutors D.N. & J.S. 11/21/2016 Biology Lab Report Sample, Cont'd Materials and Methods Use the information you recorded in your lab notebook as a guide to write this section in paragraph format. Provide enough information so that the reader could repeat the experiment, but

  13. Writing Your Lab Report/Worksheet

    Write in the third person - Scientific experiments demonstrate facts that do not depend on the observer, therefore, reports should avoid using the first and second person (I,me,my,we,our, OR us.). Using the correct verb tense - Lab reports and research papers should be mainly written in the present tense.You should limit the use of the past tense to (1) describe specific experimental methods ...

  14. The Lab Report

    Not "Lab #4" but "Lab #4: Sample Analysis using the Debye-Sherrer Method"). 2. The Abstract summarizes four essential aspects of the report: the purpose of the experiment (sometimes expressed as the purpose of the report), key findings, significance and major conclusions. The abstract often also includes a brief reference to theory or ...


    The laboratory report should always be written for the convenience of the reader. Thus, for example, each section of the report should be headlined and the sections should be arranged in an appropriate, easily-understood sequence. In the context of the course for which it is written, the laboratory report serves to describe what you did during the

  16. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  17. 27.5: Guide for writing a lab report

    Summary. Summarize your overall evaluation of the report in 2-3 sentences. Focus on the experiment's method and its result. For example, "The authors dropped balls from different heights to determine the value of g". You don't need to go into the specific details, just give a high level summary of the report.

  18. How to Write a Physics Lab Report: Essential Tips & Tricks

    9. Include your references. Don't forget to add a "References" or "Works Cited" section at the end of your lab report. Include any and all sources you used to complete the lab. Format your references using the style ( MLA, APA, or Chicago) that your instructor prefers. Part 2.

  19. Experimental Reports 1

    Experimental reports (also known as "lab reports") are reports of empirical research conducted by their authors. You should think of an experimental report as a "story" of your research in which you lead your readers through your experiment. As you are telling this story, you are crafting an argument about both the validity and reliability of ...

  20. How to Write a Lab Report: Writing Steps, Format & Examples

    Here are several examples that could give you some ideas on how to name your own lab write up: • Effects of temperature decrease on Drosophila Melanogaster lifespan. • IV 2022 marketing data sample analysis using the Bayesian method. • Lab #5: measurement of fluctuation in 5 GHz radio signal strength.

  21. How to Write the Perfect Chemistry Lab Report: A Definitive Guide

    The next section is the Introduction and it begins with this word in the left upper corner of your report. It should consist of no more than a couple of paragraphs and end with at least one hypothesis. The body of your project consists of the procedure, materials and methods employed; data; results and observations.

  22. How to Write a Lab Report: Examples from Academic Editors

    Check with your instructor about whether or not you need to write a lab report conclusion. Here's how to write a lab report conclusion: State whether the experiment supported or opposed your hypothesis. Reflect upon the significance and implications of your study. Suggest avenues for future research. Lab report conclusion example

  23. How to Write a Lab Report: Step-by-Step Guide & Examples

    In psychology, a lab report outlines a study's objectives, methods, results, discussion, press concludes, ensuring clarity press adherence to APA (or relevant) formatting guidance. A typical lab report would include the following departments: title, abstract, introduction, method, results, and discussion.

  24. Learn how to write a lab report effortlessly

    For this purpose, we will focus on formatting and length, creating the lab report outline, writing the results section, composing an excellent conclusion for a lab report, and more. Additionally, we will talk about dos and don'ts when writing a concluding section so you can avoid the mistakes. Once you finish reading and examining each part ...