7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Method Description Example
Trial and error Continue trying different solutions until problem is solved Restarting phone, turning off WiFi, turning off bluetooth in order to determine why your phone is malfunctioning
Algorithm Step-by-step problem-solving formula Instruction manual for installing new software on your computer
Heuristic General problem-solving framework Working backwards; breaking a task into steps

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

types of problem solving in cognitive psychology

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

types of problem solving in cognitive psychology

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Bias Description
Anchoring Tendency to focus on one particular piece of information when making decisions or problem-solving
Confirmation Focuses on information that confirms existing beliefs
Hindsight Belief that the event just experienced was predictable
Representative Unintentional stereotyping of someone or something
Availability Decision is based upon either an available precedent or an example that may be faulty

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

types of problem solving in cognitive psychology

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

types of problem solving in cognitive psychology

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Salene M. W. Jones Ph.D.

Cognitive Behavioral Therapy

Solving problems the cognitive-behavioral way, problem solving is another part of behavioral therapy..

Posted February 2, 2022 | Reviewed by Ekua Hagan

  • What Is Cognitive Behavioral Therapy?
  • Take our Your Mental Health Today Test
  • Find a counsellor who practices CBT
  • Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy.
  • The problem-solving technique is an iterative, five-step process that requires one to identify the problem and test different solutions.
  • The technique differs from ad-hoc problem-solving in its suspension of judgment and evaluation of each solution.

As I have mentioned in previous posts, cognitive behavioral therapy is more than challenging negative, automatic thoughts. There is a whole behavioral piece of this therapy that focuses on what people do and how to change their actions to support their mental health. In this post, I’ll talk about the problem-solving technique from cognitive behavioral therapy and what makes it unique.

The problem-solving technique

While there are many different variations of this technique, I am going to describe the version I typically use, and which includes the main components of the technique:

The first step is to clearly define the problem. Sometimes, this includes answering a series of questions to make sure the problem is described in detail. Sometimes, the client is able to define the problem pretty clearly on their own. Sometimes, a discussion is needed to clearly outline the problem.

The next step is generating solutions without judgment. The "without judgment" part is crucial: Often when people are solving problems on their own, they will reject each potential solution as soon as they or someone else suggests it. This can lead to feeling helpless and also discarding solutions that would work.

The third step is evaluating the advantages and disadvantages of each solution. This is the step where judgment comes back.

Fourth, the client picks the most feasible solution that is most likely to work and they try it out.

The fifth step is evaluating whether the chosen solution worked, and if not, going back to step two or three to find another option. For step five, enough time has to pass for the solution to have made a difference.

This process is iterative, meaning the client and therapist always go back to the beginning to make sure the problem is resolved and if not, identify what needs to change.

Andrey Burmakin/Shutterstock

Advantages of the problem-solving technique

The problem-solving technique might differ from ad hoc problem-solving in several ways. The most obvious is the suspension of judgment when coming up with solutions. We sometimes need to withhold judgment and see the solution (or problem) from a different perspective. Deliberately deciding not to judge solutions until later can help trigger that mindset change.

Another difference is the explicit evaluation of whether the solution worked. When people usually try to solve problems, they don’t go back and check whether the solution worked. It’s only if something goes very wrong that they try again. The problem-solving technique specifically includes evaluating the solution.

Lastly, the problem-solving technique starts with a specific definition of the problem instead of just jumping to solutions. To figure out where you are going, you have to know where you are.

One benefit of the cognitive behavioral therapy approach is the behavioral side. The behavioral part of therapy is a wide umbrella that includes problem-solving techniques among other techniques. Accessing multiple techniques means one is more likely to address the client’s main concern.

Salene M. W. Jones Ph.D.

Salene M. W. Jones, Ph.D., is a clinical psychologist in Washington State.

  • Find Counselling
  • Find a Support Group
  • Find Online Therapy
  • Richmond - Tweed
  • Newcastle - Maitland
  • Canberra - ACT
  • Sunshine Coast
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Cognitive Approach in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Cognitive psychology is the scientific study of the mind as an information processor. It concerns how we take in information from the outside world, and how we make sense of that information.

Cognitive psychology studies mental processes, including how people perceive, think, remember, learn, solve problems, and make decisions.

Cognitive psychologists try to build cognitive models of the information processing that occurs inside people’s minds, including perception, attention, language, memory, thinking, and consciousness.

Cognitive psychology became of great importance in the mid-1950s. Several factors were important in this:
  • Dissatisfaction with the behaviorist approach in its simple emphasis on external behavior rather than internal processes.
  • The development of better experimental methods.
  • Comparison between human and computer processing of information . Using computers allowed psychologists to try to understand the complexities of human cognition by comparing it with computers and artificial intelligence.

The emphasis of psychology shifted away from the study of conditioned behavior and psychoanalytical notions about the study of the mind, towards the understanding of human information processing using strict and rigorous laboratory investigation.

cognitive psychology sub-topics

Summary Table

Key Features
• Mediation processes
• Information processing approach
• Reductionism (breaks behavior down)
• (studies the group)
• Schemas (re: Kohlberg & Piaget)
Methodology
• Controlled Experiments
• Physical measures (e.g., neuroimaging)
• Case studies (cognitive neuroscience)
• Behavioral measures (e.g., reaction time)
Assumptions
• Psychology should be studied scientifically.
• Information received from our senses is processed by the brain, and this processing directs how we behave. 
• The mind/brain processes information like a computer. We take information in, and then it is subjected to mental processes. There is input, processing, and then output.
• Mediational processes (e.g., thinking, memory) occur between stimulus and response.
Strengths
• Objective measurement, which can be replicated and peer-reviewed
• Real-life applications (e.g., CBT)
• Clear predictions that can be can be scientifically tested
Limitations
• Reductionist (e.g., ignores biology)
• Experiments have low ecological validity
• Behaviourism – can’t objectively study unobservable internal behavior

Theoretical Assumptions

Mediational processes occur between stimulus and response:

The behaviorist approach only studies external observable (stimulus and response) behavior that can be objectively measured.

They believe that internal behavior cannot be studied because we cannot see what happens in a person’s mind (and therefore cannot objectively measure it).

However, cognitive psychologists consider it essential to examine an organism’s mental processes and how these influence behavior.

Cognitive psychology assumes a mediational process occurs between stimulus/input and response/output. 

mediational processes

These are mediational processes because they mediate (i.e., go-between) between the stimulus and the response. They come after the stimulus and before the response.

Instead of the simple stimulus-response links proposed by behaviorism, the mediational processes of the organism are essential to understand.

Without this understanding, psychologists cannot have a complete understanding of behavior.

The mediational (i.e., mental) event could be memory , perception , attention or problem-solving, etc. 
  • Perception : how we process and interpret sensory information.
  • Attention : how we selectively focus on certain aspects of our environment.
  • Memory : how we encode, store, and retrieve information.
  • Language : how we acquire, comprehend, and produce language.
  • Problem-solving and decision-making : how we reason, make judgments, and solve problems.
  • Schemas : Cognitive psychologists assume that people’s prior knowledge, beliefs, and experiences shape their mental processes. 

For example, the cognitive approach suggests that problem gambling results from maladaptive thinking and faulty cognitions, which both result in illogical errors.

Gamblers misjudge the amount of skill involved with ‘chance’ games, so they are likely to participate with the mindset that the odds are in their favour and that they may have a good chance of winning.

Therefore, cognitive psychologists say that if you want to understand behavior, you must understand these mediational processes.

Psychology should be seen as a science:

This assumption is based on the idea that although not directly observable, the mind can be investigated using objective and rigorous methods, similar to how other sciences study natural phenomena. 

Controlled experiments

The cognitive approach believes that internal mental behavior can be scientifically studied using controlled experiments . It uses the results of its investigations to make inferences about mental processes.  Cognitive psychology uses highly controlled laboratory experiments to avoid the influence of extraneous variables . This allows the researcher to establish a causal relationship between the independent and dependent variables. These controlled experiments are replicable, and the data obtained is objective (not influenced by an individual’s judgment or opinion) and measurable. This gives psychology more credibility.

Operational definitions

Cognitive psychologists develop operational definitions to study mental processes scientifically. These definitions specify how abstract concepts, such as attention or memory, can be measured and quantified (e.g., verbal protocols of thinking aloud). This allows for reliable and replicable research findings.

Falsifiability

Falsifiability in psychology refers to the ability to disprove a theory or hypothesis through empirical observation or experimentation. If a claim is not falsifiable, it is considered unscientific.

Cognitive psychologists aim to develop falsifiable theories and models, meaning they can be tested and potentially disproven by empirical evidence.

This commitment to falsifiability helps to distinguish scientific theories from pseudoscientific or unfalsifiable claims.

Empirical evidence

Cognitive psychologists rely on empirical evidence to support their theories and models. They collect data through various methods, such as experiments, observations, and questionnaires, to test hypotheses and draw conclusions about mental processes.

Cognitive psychologists assume that mental processes are not random but are organized and structured in specific ways. They seek to identify the underlying cognitive structures and processes that enable people to perceive, remember, and think.

Cognitive psychologists have made significant contributions to our understanding of mental processes and have developed various theories and models, such as the multi-store model of memory , the working memory model , and the dual-process theory of thinking.

Humans are information processors:

The idea of information processing was adopted by cognitive psychologists as a model of how human thought works.

The information processing approach is based on several assumptions, including:

  • Information is processed by a series of systems : The information processing approach proposes that a series of cognitive systems, such as attention, perception, and memory, process information from the environment. Each system plays a specific role in processing the information and passing it along to the next stage.
  • Processing systems transform information : As information passes through these cognitive systems, it is transformed or modified in systematic ways. For example, incoming sensory information may be filtered by attention, encoded into memory, or used to update existing knowledge structures.
  • Research aims to specify underlying processes and structures : The primary goal of research within the information processing approach is to identify, describe, and understand the specific cognitive processes and mental structures that underlie various aspects of cognitive performance, such as learning, problem-solving, and decision-making.
  • Human information processing resembles computer processing : The information processing approach draws an analogy between human cognition and computer processing. Just as computers take in information, process it according to specific algorithms, and produce outputs, the human mind is thought to engage in similar processes of input, processing, and output.

Computer-Mind Analogy

The computer-brain metaphor, or the information processing approach, is a significant concept in cognitive psychology that likens the human brain’s functioning to that of a computer.

This metaphor suggests that the brain, like a computer, processes information through a series of linear steps, including input, storage, processing, and output.

computer brain metaphor

According to this assumption, when we interact with the environment, we take in information through our senses (input).

This information is then processed by various cognitive systems, such as perception, attention, and memory. These systems work together to make sense of the input, organize it, and store it for later use.

During the processing stage, the mind performs operations on the information, such as encoding, transforming, and combining it with previously stored knowledge. This processing can involve various cognitive processes, such as thinking, reasoning, problem-solving, and decision-making.

The processed information can then be used to generate outputs, such as actions, decisions, or new ideas. These outputs are based on the information that has been processed and the individual’s goals and motivations.

This has led to models showing information flowing through the cognitive system, such as the multi-store memory model.

as multi

The information processing approach also assumes that the mind has a limited capacity for processing information, similar to a computer’s memory and processing limitations.

This means that humans can only attend to and process a certain amount of information at a given time, and that cognitive processes can be slowed down or impaired when the mind is overloaded.

The Role of Schemas

A schema is a “packet of information” or cognitive framework that helps us organize and interpret information. It is based on previous experience.

Cognitive psychologists assume that people’s prior knowledge, beliefs, and experiences shape their mental processes. They investigate how these factors influence perception, attention, memory, and thinking.

Schemas help us interpret incoming information quickly and effectively, preventing us from being overwhelmed by the vast amount of information we perceive in our environment.

Schemas can often affect cognitive processing (a mental framework of beliefs and expectations developed from experience). As people age, they become more detailed and sophisticated.

However, it can also lead to distortion of this information as we select and interpret environmental stimuli using schemas that might not be relevant.

This could be the cause of inaccuracies in areas such as eyewitness testimony. It can also explain some errors we make when perceiving optical illusions.

1. Behaviorist Critique

B.F. Skinner criticizes the cognitive approach. He believes that only external stimulus-response behavior should be studied, as this can be scientifically measured.

Therefore, mediation processes (between stimulus and response) do not exist as they cannot be seen and measured.

Behaviorism assumes that people are born a blank slate (tabula rasa) and are not born with cognitive functions like schemas , memory or perception .

Due to its subjective and unscientific nature, Skinner continues to find problems with cognitive research methods, namely introspection (as used by Wilhelm Wundt).

2. Complexity of mental experiences

Mental processes are highly complex and multifaceted, involving a wide range of cognitive, affective, and motivational factors that interact in intricate ways.

The complexity of mental experiences makes it difficult to isolate and study specific mental processes in a controlled manner.

Mental processes are often influenced by individual differences, such as personality, culture, and past experiences, which can introduce variability and confounds in research .

3. Experimental Methods 

While controlled experiments are the gold standard in cognitive psychology research, they may not always capture real-world mental processes’ complexity and ecological validity.

Some mental processes, such as creativity or decision-making in complex situations, may be difficult to study in laboratory settings.

Humanistic psychologist Carl Rogers believes that using laboratory experiments by cognitive psychology has low ecological validity and creates an artificial environment due to the control over variables .

Rogers emphasizes a more holistic approach to understanding behavior.

The cognitive approach uses a very scientific method that is controlled and replicable, so the results are reliable.

However, experiments lack ecological validity because of the artificiality of the tasks and environment, so they might not reflect the way people process information in their everyday lives.

For example, Baddeley (1966) used lists of words to find out the encoding used by LTM.

However, these words had no meaning to the participants, so the way they used their memory in this task was probably very different from what they would have done if the words had meaning for them.

This is a weakness, as the theories might not explain how memory works outside the laboratory.

4. Computer Analogy

The information processing paradigm of cognitive psychology views the minds in terms of a computer when processing information.

However, although there are similarities between the human mind and the operations of a computer (inputs and outputs, storage systems, and the use of a central processor), the computer analogy has been criticized.

For example, the human mind is characterized by consciousness, subjective experience, and self-awareness , which are not present in computers.

Computers do not have feelings, emotions, or a sense of self, which play crucial roles in human cognition and behavior.

The brain-computer metaphor is often used implicitly in neuroscience literature through terms like “sensory computation,” “algorithms,” and “neural codes.” However, it is difficult to identify these concepts in the actual brain.

5. Reductionist

The cognitive approach is reductionist as it does not consider emotions and motivation, which influence the processing of information and memory. For example, according to the Yerkes-Dodson law , anxiety can influence our memory.

Such machine reductionism (simplicity) ignores the influence of human emotion and motivation on the cognitive system and how this may affect our ability to process information.

Early theories of cognitive approach did not always recognize physical ( biological psychology ) and environmental (behaviorist approach) factors in determining behavior.

However, it’s important to note that modern cognitive psychology has evolved to incorporate a more holistic understanding of human cognition and behavior.

1. Importance of cognitive factors versus external events

Cognitive psychology emphasizes the role of internal cognitive processes in shaping emotional experiences, rather than solely focusing on external events.

Beck’s cognitive theory suggests that it is not the external events themselves that lead to depression, but rather the way an individual interprets and processes those events through their negative schemas.

This highlights the importance of addressing cognitive factors in the treatment of depression and other mental health issues.

Social exchange theory (Thibaut & Kelly, 1959) emphasizes that relationships are formed through internal mental processes, such as decision-making, rather than solely based on external factors.

The computer analogy can be applied to this concept, where individuals observe behaviors (input), process the costs and benefits (processing), and then make a decision about the relationship (output).

2. Interdisciplinary approach

While early cognitive psychology may have neglected physical and environmental factors, contemporary cognitive psychology has increasingly integrated insights from other approaches.

Cognitive psychology draws on methods and findings from other scientific disciplines, such as neuroscience , computer science, and linguistics, to inform their understanding of mental processes.

This interdisciplinary approach strengthens the scientific basis of cognitive psychology.

Cognitive psychology has influenced and integrated with many other approaches and areas of study to produce, for example, social learning theory , cognitive neuropsychology, and artificial intelligence (AI).

3. Real World Applications

Another strength is that the research conducted in this area of psychology very often has applications in the real world.

By highlighting the importance of cognitive processing, the cognitive approach can explain mental disorders such as depression.

Beck’s cognitive theory of depression argues that negative schemas about the self, the world, and the future are central to the development and maintenance of depression.

These negative schemas lead to biased processing of information, selective attention to negative aspects of experience, and distorted interpretations of events, which perpetuate the depressive state.

By identifying the role of cognitive processes in mental disorders, cognitive psychology has informed the development of targeted interventions.

Cognitive behavioral therapy aims to modify the maladaptive thought patterns and beliefs that underlie emotional distress, helping individuals to develop more balanced and adaptive ways of thinking.

CBT’s basis is to change how people process their thoughts to make them more rational or positive.

Through techniques such as cognitive restructuring, behavioral experiments, and guided discovery, CBT helps individuals to challenge and change their negative schemas, leading to improvements in mood and functioning.

Cognitive behavioral therapy (CBT) has been very effective in treating depression (Hollon & Beck, 1994), and moderately effective for anxiety problems (Beck, 1993). 

Issues and Debates

Free will vs. determinism.

The cognitive approach’s position is unclear. It argues that cognitive processes are influenced by experiences and schemas, which implies a degree of determinism.

On the other hand, cognitive-behavioral therapy (CBT) operates on the premise that individuals can change their thought patterns, suggesting a capacity for free will.

Nature vs. Nurture

The cognitive approach takes an interactionist view of the debate, acknowledging the influence of both nature and nurture on cognitive processes.

It recognizes that while some cognitive abilities, such as language acquisition, may have an innate component (nature), experiences and learning (nurture) also shape the way information is processed.

Holism vs. Reductionism

The cognitive approach tends to be reductionist in its methodology, as it often studies cognitive processes in isolation.

For example, researchers may focus on memory processes without considering the influence of other cognitive functions or environmental factors.

While this approach allows for more controlled study, it may lack ecological validity, as in real life, cognitive processes typically interact and function simultaneously.

Idiographic vs. Nomothetic

The cognitive approach is primarily nomothetic, as it seeks to establish general principles and theories of information processing that apply to all individuals.

It aims to identify universal patterns and mechanisms of cognition rather than focusing on individual differences.

History of Cognitive Psychology

  • Wolfgang Köhler (1925) – Köhler’s book “The Mentality of Apes” challenged the behaviorist view by suggesting that animals could display insightful behavior, leading to the development of Gestalt psychology.
  • Norbert Wiener (1948) – Wiener’s book “Cybernetics” introduced concepts such as input and output, which influenced the development of information processing models in cognitive psychology.
  • Edward Tolman (1948) – Tolman’s work on cognitive maps in rats demonstrated that animals have an internal representation of their environment, challenging the behaviorist view.
  • George Miller (1956) – Miller’s paper “The Magical Number 7 Plus or Minus 2” proposed that short-term memory has a limited capacity of around seven chunks of information, which became a foundational concept in cognitive psychology.
  • Allen Newell and Herbert A. Simon (1972) – Newell and Simon developed the General Problem Solver, a computer program that simulated human problem-solving, contributing to the growth of artificial intelligence and cognitive modeling.
  • George Miller and Jerome Bruner (1960) – Miller and Bruner established the Center for Cognitive Studies at Harvard, which played a significant role in the development of cognitive psychology as a distinct field.
  • Ulric Neisser (1967) – Neisser’s book “Cognitive Psychology” formally established cognitive psychology as a separate area of study, focusing on mental processes such as perception, memory, and thinking.
  • Richard Atkinson and Richard Shiffrin (1968) – Atkinson and Shiffrin proposed the Multi-Store Model of memory, which divided memory into sensory, short-term, and long-term stores, becoming a key model in the study of memory.
  • Eleanor Rosch’s (1970s) research on natural categories and prototypes, which influenced the study of concept formation and categorization.
  • Endel Tulving’s (1972) distinction between episodic and semantic memory, which further developed the understanding of long-term memory.
  • Baddeley and Hitch’s (1974) proposal of the Working Memory Model, which expanded on the concept of short-term memory and introduced the idea of a central executive.
  • Marvin Minsky’s (1975) framework of frames in artificial intelligence, which influenced the understanding of knowledge representation in cognitive psychology.
  • David Rumelhart and Andrew Ortony’s (1977) work on schema theory, which described how knowledge is organized and used for understanding and remembering information.
  • Amos Tversky and Daniel Kahneman’s (1970s-80s) research on heuristics and biases in decision making, which led to the development of behavioral economics and the study of judgment and decision-making.
  • David Marr’s (1982) computational theory of vision, which provided a framework for understanding visual perception and influenced the field of computational cognitive science.
  • The development of connectionism and parallel distributed processing (PDP) models in the 1980s, which provided an alternative to traditional symbolic models of cognitive processes.
  • Noam Chomsky’s (1980s) theory of Universal Grammar and the language acquisition device, which influenced the study of language and cognitive development.
  • The emergence of cognitive neuroscience in the 1990s, which combined techniques from cognitive psychology, neuroscience, and computer science to study the neural basis of cognitive processes.

Atkinson, R. C., & Shiffrin, R. M. (1968). Chapter: Human memory: A proposed system and its control processes. In Spence, K. W., & Spence, J. T. The psychology of learning and motivation (Volume 2). New York: Academic Press. pp. 89–195.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 47-89). Academic Press.

Beck, A. T, & Steer, R. A. (1993). Beck Anxiety Inventory Manual. San Antonio: Harcourt Brace and Company.

Chomsky, N. (1986). Knowledge of Language: Its Nature, Origin, and Use . Praeger.

Gazzaniga, M. S. (Ed.). (1995). The Cognitive Neurosciences. MIT Press.

Hollon, S. D., & Beck, A. T. (1994). Cognitive and cognitive-behavioral therapies. In A. E. Bergin & S.L. Garfield (Eds.), Handbook of psychotherapy and behavior change (pp. 428—466) . New York: Wiley.

Köhler, W. (1925). An aspect of Gestalt psychology. The Pedagogical Seminary and Journal of Genetic Psychology, 32(4) , 691-723.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information . W. H. Freeman.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review , 63 (2): 81–97.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The Psychology of Computer Vision (pp. 211-277). McGraw-Hill.

Neisser, U (1967). Cognitive psychology . Appleton-Century-Crofts: New York

Newell, A., & Simon, H. (1972). Human problem solving . Prentice-Hall.

Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4 (3), 328-350.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. MIT Press.

Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.), Schooling and the Acquisition of Knowledge (pp. 99-135). Erlbaum.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185 (4157), 1124-1131.

Thibaut, J., & Kelley, H. H. (1959). The social psychology of groups . New York: Wiley.

Tolman, E. C., Hall, C. S., & Bretnall, E. P. (1932). A disproof of the law of effect and a substitution of the laws of emphasis, motivation and disruption. Journal of Experimental Psychology, 15(6) , 601.

Tolman E. C. (1948). Cognitive maps in rats and men . Psychological Review. 55, 189–208

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of Memory (pp. 381-403). Academic Press.

Wiener, N. (1948). Cybernetics or control and communication in the animal and the machine . Paris, (Hermann & Cie) & Camb. Mass. (MIT Press).

Further Reading

  • Why Your Brain is Not a Computer
  • Cognitive Psychology Historial Development

Print Friendly, PDF & Email

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

  • Mental Health

What Is Cognitive Psychology?

types of problem solving in cognitive psychology

Cognitive psychology is the branch of psychology dedicated to studying how people think. The cognitive perspective in psychology focuses on how the interactions of thinking, emotion, creativity, and problem-solving abilities affect how and why you think the way you do. Cognitive psychology attempts to measure different types of intelligence, determine how you organize your thoughts, and compare different components of cognition. 

What Does a Cognitive Psychologist Do?

Cognitive psychologists do clinical research, training, education, and clinical practice. They use the insights gained from studying how people think and process information to help people develop new ways of dealing with problem behaviors and live better lives. Cognitive psychologists have special knowledge of applied behavior analysis, behavior therapy, learning theories, and emotional processing theories. 

They know how to apply this knowledge to the human condition and use it in the treatment of: 

  • Anxiety disorders
  • Academic performance
  • Personality disorders
  • Substance abuse
  • Depressive disorders
  • Relationship problems
  • Autism spectrum disorder
  • Emotional regulation 

The History of Cognitive Psychology

Cognitive psychology gained popularity in the 1950s to 1970s as researchers became more interested in how thinking affects behavior. This period is called the "cognitive revolution" and represented a shift in thinking and focus for psychologists. Before this time, the behaviorist approach dominated psychology. The behaviorists only studied external behavior that could be measured.

Behaviorists believed it was pointless to try to study the mind because there was no way to see or objectively measure what happened in someone's thoughts. The mind was seen as a black box that couldn't be measured. 

The cognitive approach gave rise to the idea that internal mental behavior could be studied using experiments. Cognitive psychology assumes that there is an internal process that occurs between when a stimulus happens and when you respond to it.

These processes are called mediational processes and can involve memory, perception, attention, problem-solving, or other processes. Cognitive psychologists believe if you want to understand behavior, you have to understand the mediational processes that cause it.

Cognitive Psychology Examples

Some examples of studies and work in cognitive psychology include: 

Experts think differently. Beginners think literally when they try to solve a problem. They tend to focus on the surface details when they're presented with an unfamiliar situation. Experts are able to see the underlying connections and think of the problem more abstractly. 

Short-term memory. Your short-term memory is probably a lot shorter than you think. A classic study in cognitive psychology found that participants in a study could only recall 10% of random three-letter strings after 18 seconds. After 3 seconds, the participants could recall 80% of the letter strings, so there was a significant drop after 15 additional seconds. 

Mapping the brain. Some cognitive psychologists are working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative. This project has been compared to the human genome project. It's an attempt to learn more about the 100 billion brain cells, including the connections between them and how they relate to behavior and health.

Cognitive Psychology Perspective in Practice

Cognitive psychology perspectives can be used to improve many areas of life, including how children learn. Researchers Pooja K. Agarwal and Henry L. Roediger III used insights from their cognitive psychology studies to develop better practices to encourage learning in the classroom. They used experiments to determine how students learn and apply their knowledge as well as disprove outdated theories. 

Experts used to believe that memory could be improved with practice, a theory that has been disproven. Another popular theory that has been debunked is that errors interfere with learning. The opposite is actually true. You learn from your mistakes, so making errors improves your ability to learn. While most educators have moved beyond those theories, there are still some unproven ones that linger, like the notion that different people have different learning styles. 

In addition to disproving theories that don't work, cognitive psychology shines a light on theories that do work. After combing through over 100 years of studies, researchers found four different practices that increased students' ability to learn: 

  • Retrieval practice, which is quickly bringing the information you're learning to mind
  • Getting feedback that lets you know what you don't know
  • Spaced practice, which is returning to the material periodically over time
  • Interleaving, which is practicing a mix of skills

Careers in Cognitive Psychology

Cognitive psychologists can work at universities doing research or teaching. They can also work in the private sector in organizational psychology, software development, or human-computer interaction. Another option for cognitive psychologists is working in a clinical setting treating patients for issues related to mental processes, like: 

  • Alzheimer's disease
  • Speech problems
  • Memory issues
  • Sensory difficulties

You can work in some entry-level jobs with a bachelor's degree in cognitive psychology, but most opportunities will be available to people with a master's or doctorate degree. Most research done by people with master's degrees is supervised by cognitive psychologists with doctorate degrees. 

photo of couple embracing

Top doctors in ,

Find more top doctors on, related links.

  • Mental Health Home
  • Mental Health News & Features
  • Mental Health Reference
  • Mental Health Quizzes
  • Mental Health Slideshows
  • Mental Health Blogs
  • Mental Health Videos
  • Find a Psychiatrist
  • Anxiety & Panic Disorders
  • Bipolar Disorder
  • Crisis Assistance
  • Eating Disorders
  • Health & Balance
  • Personality Disorders
  • Schizophrenia
  • Social Media and Mental Health
  • Stress Management
  • Substance Abuse & Addiction
  • More Related Topics

types of problem solving in cognitive psychology

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is Cognitive Psychology?

The Science of How We Think

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

types of problem solving in cognitive psychology

Steven Gans, MD is board-certified in psychiatry and is an active supervisor, teacher, and mentor at Massachusetts General Hospital.

types of problem solving in cognitive psychology

Topics in Cognitive Psychology

  • Current Research
  • Cognitive Approach in Practice

Careers in Cognitive Psychology

How cognitive psychology differs from other branches of psychology, frequently asked questions.

Cognitive psychology is the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Learning about how people think and process information helps researchers and psychologists understand the human brain and assist people with psychological difficulties.

This article discusses what cognitive psychology is—its history, current trends, practical applications, and career paths.

Findings from cognitive psychology help us understand how people think, including how they acquire and store memories. By knowing more about how these processes work, psychologists can develop new ways of helping people with cognitive problems.

Cognitive psychologists explore a wide variety of topics related to thinking processes. Some of these include: 

  • Attention --our ability to process information in the environment while tuning out irrelevant details
  • Choice-based behavior --actions driven by a choice among other possibilities
  • Decision-making
  • Information processing
  • Language acquisition --how we learn to read, write, and express ourselves
  • Problem-solving
  • Speech perception -how we process what others are saying
  • Visual perception --how we see the physical world around us

History of Cognitive Psychology

Although it is a relatively young branch of psychology , it has quickly grown to become one of the most popular subfields. Cognitive psychology grew into prominence between the 1950s and 1970s.

Prior to this time, behaviorism was the dominant perspective in psychology. This theory holds that we learn all our behaviors from interacting with our environment. It focuses strictly on observable behavior, not thought and emotion. Then, researchers became more interested in the internal processes that affect behavior instead of just the behavior itself. 

This shift is often referred to as the cognitive revolution in psychology. During this time, a great deal of research on topics including memory, attention, and language acquisition began to emerge. 

In 1967, the psychologist Ulric Neisser introduced the term cognitive psychology, which he defined as the study of the processes behind the perception, transformation, storage, and recovery of information.

Cognitive psychology became more prominent after the 1950s as a result of the cognitive revolution.

Current Research in Cognitive Psychology

The field of cognitive psychology is both broad and diverse. It touches on many aspects of daily life. There are numerous practical applications for this research, such as providing help coping with memory disorders, making better decisions , recovering from brain injury, treating learning disorders, and structuring educational curricula to enhance learning.

Current research on cognitive psychology helps play a role in how professionals approach the treatment of mental illness, traumatic brain injury, and degenerative brain diseases.

Thanks to the work of cognitive psychologists, we can better pinpoint ways to measure human intellectual abilities, develop new strategies to combat memory problems, and decode the workings of the human brain—all of which ultimately have a powerful impact on how we treat cognitive disorders.

The field of cognitive psychology is a rapidly growing area that continues to add to our understanding of the many influences that mental processes have on our health and daily lives.

From understanding how cognitive processes change as a child develops to looking at how the brain transforms sensory inputs into perceptions, cognitive psychology has helped us gain a deeper and richer understanding of the many mental events that contribute to our daily existence and overall well-being.

The Cognitive Approach in Practice

In addition to adding to our understanding of how the human mind works, the field of cognitive psychology has also had an impact on approaches to mental health. Before the 1970s, many mental health treatments were focused more on psychoanalytic , behavioral , and humanistic approaches.

The so-called "cognitive revolution" put a greater emphasis on understanding the way people process information and how thinking patterns might contribute to psychological distress. Thanks to research in this area, new approaches to treatment were developed to help treat depression, anxiety, phobias, and other psychological disorders .

Cognitive behavioral therapy and rational emotive behavior therapy are two methods in which clients and therapists focus on the underlying cognitions, or thoughts, that contribute to psychological distress.

What Is Cognitive Behavioral Therapy?

Cognitive behavioral therapy (CBT) is an approach that helps clients identify irrational beliefs and other cognitive distortions that are in conflict with reality and then aid them in replacing such thoughts with more realistic, healthy beliefs.

If you are experiencing symptoms of a psychological disorder that would benefit from the use of cognitive approaches, you might see a psychologist who has specific training in these cognitive treatment methods.

These professionals frequently go by titles other than cognitive psychologists, such as psychiatrists, clinical psychologists , or counseling psychologists , but many of the strategies they use are rooted in the cognitive tradition.

Many cognitive psychologists specialize in research with universities or government agencies. Others take a clinical focus and work directly with people who are experiencing challenges related to mental processes. They work in hospitals, mental health clinics, and private practices.

Research psychologists in this area often concentrate on a particular topic, such as memory. Others work directly on health concerns related to cognition, such as degenerative brain disorders and brain injuries.

Treatments rooted in cognitive research focus on helping people replace negative thought patterns with more positive, realistic ones. With the help of cognitive psychologists, people are often able to find ways to cope and even overcome such difficulties.

Reasons to Consult a Cognitive Psychologist

  • Alzheimer's disease, dementia, or memory loss
  • Brain trauma treatment
  • Cognitive therapy for a mental health condition
  • Interventions for learning disabilities
  • Perceptual or sensory issues
  • Therapy for a speech or language disorder

Whereas behavioral and some other realms of psychology focus on actions--which are external and observable--cognitive psychology is instead concerned with the thought processes behind the behavior. Cognitive psychologists see the mind as if it were a computer, taking in and processing information, and seek to understand the various factors involved.

A Word From Verywell

Cognitive psychology plays an important role in understanding the processes of memory, attention, and learning. It can also provide insights into cognitive conditions that may affect how people function.

Being diagnosed with a brain or cognitive health problem can be daunting, but it is important to remember that you are not alone. Together with a healthcare provider, you can come up with an effective treatment plan to help address brain health and cognitive problems.

Your treatment may involve consulting with a cognitive psychologist who has a background in the specific area of concern that you are facing, or you may be referred to another mental health professional that has training and experience with your particular condition.

Ulric Neisser is considered the founder of cognitive psychology. He was the first to introduce the term and to define the field of cognitive psychology. His primary interests were in the areas of perception and memory, but he suggested that all aspects of human thought and behavior were relevant to the study of cognition.

A cognitive map refers to a mental representation of an environment. Such maps can be formed through observation as well as through trial and error. These cognitive maps allow people to orient themselves in their environment.

While they share some similarities, there are some important differences between cognitive neuroscience and cognitive psychology. While cognitive psychology focuses on thinking processes, cognitive neuroscience is focused on finding connections between thinking and specific brain activity. Cognitive neuroscience also looks at the underlying biology that influences how information is processed.

Cognitive psychology is a form of experimental psychology. Cognitive psychologists use experimental methods to study the internal mental processes that play a role in behavior.

Sternberg RJ, Sternberg K. Cognitive Psychology . Wadsworth/Cengage Learning. 

Krapfl JE. Behaviorism and society . Behav Anal. 2016;39(1):123-9. doi:10.1007/s40614-016-0063-8

Cutting JE. Ulric Neisser (1928-2012) . Am Psychol . 2012;67(6):492. doi:10.1037/a0029351

Ruggiero GM, Spada MM, Caselli G, Sassaroli S. A historical and theoretical review of cognitive behavioral therapies: from structural self-knowledge to functional processes .  J Ration Emot Cogn Behav Ther . 2018;36(4):378-403. doi:10.1007/s10942-018-0292-8

Parvin P. Ulric Neisser, cognitive psychology pioneer, dies . Emory News Center.

APA Dictionary of Psychology. Cognitive map . American Psychological Association.

Forstmann BU, Wagenmakers EJ, Eichele T, Brown S, Serences JT. Reciprocal relations between cognitive neuroscience and formal cognitive models: opposites attract? . Trends Cogn Sci . 2011;15(6):272-279. doi:10.1016/j.tics.2011.04.002

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What Is the Cognitive Psychology Approach? 12 Key Theories

Cognitive Psychology

Maintaining focus on the oncoming traffic is paramount, yet I am barely aware of the seagulls flying overhead.

These noisy birds only receive attention when I am safely walking up the other side of the road, their cries reminding me of childhood seaside vacations.

Cognitive psychology focuses on the internal mental processes needed to make sense of the environment and decide on the next appropriate action (Eysenck & Keane, 2015).

This article explores the cognitive psychology approach, its origins, and several theories and models involved in cognition.

Before you continue, we thought you might like to download our three Positive Psychology Exercises for free . These science-based exercises explore fundamental aspects of positive psychology, including strengths, values, and self-compassion, and will give you the tools to enhance the wellbeing of your clients, students, or employees.

This Article Contains:

What is the cognitive psychology approach, a brief history of cognitive psychology, cognitive psychology vs behaviorism, 12 key theories, concepts, and models, fascinating research experiments, a look at positive cognitive psychology, interesting resources from positivepsychology.com, a take-home message.

The upsurge of research into the mysteries of the human brain and mind has been considerable in recent decades, with recognition of the importance of cognitive process in clinical psychology and social psychology  (Eysenck & Keane, 2015).

As a result, cognitive psychology has profoundly affected the field of psychology and our understanding of what it is to be human.

Perhaps more surprisingly, it has had such an effect without clear boundaries, an integrated set of assumptions and concepts, or a recognizable spokesperson (Gross, 2020).

So, what exactly is the cognitive psychology approach?

Cognitive psychology attempts to understand human cognition by focusing on what appear to be cognitive tasks that require little effort (Goldstein, 2011).

Let’s return to our example of walking down the road. Imagine now that we are also taking a call. We’re now combining several concurrent cognitive tasks:

  • Perceiving the environment Distinguishing cars from traffic signals and discerning their direction and speed on the road as well as the people ahead standing, talking, and blocking the sidewalk.
  • Paying attention Attending to what our partner is asking us on the phone, above the traffic noise.
  • Visualizing Forming a mental image of items in the house, responding to the question, “Where did you leave your car keys?”
  • Comprehending and producing language Understanding the real question (“I need to take the car. Where are your keys?”) from what is said and formulating a suitable reply.
  • Problem-solving Working out how to get to the next appointment without the car.
  • Decision-making Concluding that the timing of one meeting will not work and choosing to push it to another day.

While cognitive psychologists initially focused firmly on an analogy comparing the mind to a computer, their understanding has moved on.

There are currently four approaches, often overlapping and frequently combined, that science uses to understand human cognition (Eysenck & Keane, 2015):

  • Cognitive psychology The attempt to “understand human cognition by using behavioral evidence” (Eysenck & Keane, 2015, p. 2).
  • Cognitive neuropsychology Understanding ‘normal’ cognition through the study of patients living with a brain injury.
  • Cognitive neuroscience Combining evidence from the brain with behavior to form a more complete picture of cognition.
  • Computational cognitive science Using computational models to understand and test our understanding of human cognition.

Cognitive psychology plays a massive and essential role in understanding human cognition and is stronger because of its close relationships and interdependencies with other academic disciplines (Eysenck & Keane, 2015).

History of Cognitive Psychology

In 1868, a Dutch physiologist, Franciscus Donders, began to measure reaction time – something we would now see as an experiment in cognitive psychology (Goldstein, 2011).

Donders recognized that mental responses could not be measured directly but could be inferred from behavior. Not long after, Hermann Ebbinghaus began examining the nature and inner workings of human memory using nonsense syllables (Goldstein, 2011).

By the late 1800s, Wilhelm Wundt had set up the first laboratory dedicated to studying the mind scientifically. His approach became known as structuralism . His bold aim was to build a periodic table of the mind , containing all the sensations involved in creating any experience (Goldstein, 2011).

However, the use of analytical introspection to uncover hidden mental processes was gradually dropped when John Watson proposed a new psychological approach that became known as behaviorism (Goldstein, 2011).

Watson rejected the introspective approach and instead focused on observable behavior. His idea of classical conditioning – the connection of a new stimulus with a previously neutral one – was later surpassed by B. F. Skinner’s idea of operant conditioning , which focused on positive reinforcement (Goldstein, 2011).

Both theories sought to understand the relationship between stimulus and response rather than the mind’s inner workings (Goldstein, 2011).

Prompted by a scathing attack by linguist and cognitive scientist Noam Chomsky, by the 1950s behaviorism as the dominant psychological discipline was in decline. The introduction of the digital computer led to the information-processing approach , inspiring psychologists to think of the mind in terms of a sequence of processing stages (Goldstein, 2011).

3 positive psychology exercises

Download 3 Free Positive Psychology Exercises (PDF)

Enhance wellbeing with these free, science-based exercises that draw on the latest insights from positive psychology.

Download 3 Free Positive Psychology Tools Pack (PDF)

By filling out your name and email address below.

Moore (1996) recognized the tensions of the paradigm shift from behaviorism to cognitive psychology.

While research into cognitive psychology, cognitive neuropsychology, cognitive neuroscience , and computational cognitive science is now widely accepted as the driving force behind understanding mental processes (such as memory, perception, problem-solving, and attention), this was not always the case (Gross, 2020).

Moore (1996) highlighted the relationship between behaviorism and the relatively new field of cognitive psychology, and the sometimes mistaken assumptions regarding the nature of the former approach:

  • Behaviorism is typically only associated with studying publicly observable behavior. Unlike behaviorism, cognitive psychology is viewed as free of the restrictions of logical positivism, which rely on verification through observation.

Since then, modern cognitive psychology has incorporated findings from many other disciplines, including evolutionary psychology , computer science, artificial intelligence , and neuroscience (Eysenck & Keane, 2015).

  • Unlike behaviorism, cognitive psychology is theoretical and explanatory. Behaviorism is often considered merely descriptive, while cognitive psychology is seen as being able to explain what is behind behavior.

Particular ongoing advances in cognitive psychology include perception, language comprehension and production, and problem-solving (Eysenck & Keane, 2015).

  • Behaviorism cannot incorporate theoretical terms. While challenged by some behaviorists at the time, it was argued that behaviorism could not incorporate theoretical terms unless related to directly observable behavior.

At the time, cognitive psychologists also argued that it was wrong of behaviorists to interpret mental states in terms of brain states.

Neuroscience advances, such as new imaging techniques like functional MRI, continue to offer fresh insights into the relationship between the brain and mental states (Eysenck & Keane, 2015).

Clearly, the relationship between behaviorism and the developing field of cognitive psychology has been complex. However, cognitive psychology has grown into a school of thought that has led to significant advances in understanding cognition, especially when teamed up with other developments in computing and neuroscience.

This may not have been possible without the shift in the dominant schools of thought in psychology (Gross, 2020; Goldstein, 2011; Eysenck & Keane, 2015).

Cognitive Psychology Theories

And while it is beyond the scope of this article to cover the full breadth or depth of the areas of research, we list several of the most important and fascinating specialties and theories below.

It is hardly possible to imagine a world in which attention doesn’t play an essential role in how we interact with the environment, and yet, we rarely give it a thought.

According to cognitive psychology, attention is most active when driven by an individual’s expectations or goals, known as top-down processing . On the other hand, it is more passive when controlled by external stimuli, such as a loud noise, referred to as bottom-up processing (Eysenck & Keane, 2015).

A further distinction exists between focused attention (selective) and divided attention . Research into the former explores how we are able to focus on one item (noise, image, etc.) when there are several. In contrast, the latter looks at how we can maintain attention on two or more stimuli simultaneously.

Donald Broadbent proposed the bottleneck model to explain how we can attend to just one message when several are presented, for example, in dichotic listening experiments, where different auditory stimuli are presented to each ear. Broadbent’s model suggests multiple processing stages, each one progressively restricting the information flow (Goldstein, 2011).

As with all other areas of cognition, perception is far more complicated than we might first imagine. Take, for example, vision. While a great deal of research has “involved presenting a visual stimulus and assessing aspects of its processing,” there is also the time aspect to consider (Eysenck & Keane, 2015, p. 121).

We need to not only perceive objects, but also make sense of their movement and detect changes in the visual environment over time (Eysenck & Keane, 2015).

Research suggests perception, like attention, combines bottom-up and top-down processing. Bottom-up processing involves neurons that fire in response to specific elements of an image – perhaps aspects of a face, nose, eyebrows, jawline, etc. Top-down processing considers how the knowledge someone brings with them affects their perception.

Bottom-down processing helps explain why two people, presented with the same stimuli, experience different perceptions as a result of their expectations and prior knowledge (Goldstein, 2011).

Combining bottom-up and top-down processing also enables the individual to make sense of both static and moving images when limited information is available; we can track a person walking through a crowd or a plane disappearing in and out of clouds (Eysenck & Keane, 2015).

The mirror neuron system is incredibly fascinating and is proving valuable in our attempts to understand biological motion. Observing actions activates similar areas of the brain as performing them. The model appears to explain how we can imitate the actions of another person – crucial to learning (Eysenck & Keane, 2015).

Language comprehension

Whether written or spoken, understanding language involves a high degree of multi-level processing (Eysenck & Keane, 2015).

Comprehension begins with an initial analysis of sentence structure (larger language units require additional processing). Beyond processing syntax (the rules for building and analyzing sentences), analysis of sentence meaning ( semantics ) is necessary to understand if the interpretation should be literal or involve irony, metaphor, or sarcasm (Eysenck & Keane, 2015).

Pragmatics examines intended meaning. For example, shouting, “That’s the doorbell!” is not likely to be a simple observation, but rather a request to answer the door (Eysenck & Keane, 2015).

Several models have been proposed to understand the analysis and comprehension of sentences, known as parsing , including (Eysenck & Keane, 2015):

  • Garden-path model This model attempts to explain why some sentences are ambiguous (such as, “The horse raced past the barn fell.”). It suggests they are challenging to comprehend because the analysis is performed on each individual unit of the sentence with little feedback, and correction is inhibited.
  • Constraint-based model The interpretations of a sentence may be limited by several constraints, including syntactic, semantic, and general world knowledge.
  • Unrestricted race model This model combines the garden-path and constraint-based model, and suggests all sources of information inform syntactic structure. One such interpretation is selected until it is discarded, with good reason, for another.
  • Good-enough representation This model proposes that parsing provides a ‘good-enough’ interpretation rather than something detailed, accurate, and complete.

The research and theories above hint at the vast complexity of human cognition and explain why so many models and concepts attempt to answer what happens when it works and, equally important, when it doesn’t.

A level of psychology: the cognitive approach – Atomi

There are many research experiments in cognitive psychology that highlight the successes and failings of human cognition. Each of the following three offers insight into the mental processes behind our thinking and behavior.

Cocktail party phenomenon

Selective attention – or in this case, selective listening – is often exemplified by what has become known as the cocktail party phenomenon  (Eysenck & Keane, 2015).

Even in a busy room and possibly mid-conversation, we can often hear if someone else mentions our name. It seems we can filter out surrounding noise by combining bottom-up and top-down processing to create a “winner takes it all” situation where the processing of one high-value auditory input suppresses the brain activity of all others (Goldstein, 2011).

While people may believe that the speed of hand movement allows magicians to trick us, research suggests the main factor is misdirection (Eysenck & Keane, 2015).

A 2010 study of a trick involving the disappearance of a lighter identified that when the lighter was dropped (to hide it from a later hand-opening finale), it was masked by directing attention from the fixation point – known as covert attention – with surprising effectiveness.

However, subjects were able to identify the drop when their attention was directed to the fixation point – known as overt attention (Kuhn & Findlay, 2010).

In a thought-provoking study exploring freewill, participants were asked to consciously decide whether to move their finger left or right while a functional MRI scanner monitored their prefrontal cortex and parietal cortex (Soon, Brass, Heinze, & Haynes, 2008).

Brain activity predicted the direction of movement a full seven seconds before they consciously became aware of their decision. While follow-up research has challenged some of the findings, it appears that brain activity may come before conscious thinking (Eysenck & Keane, 2015).

Positive Cognitive Psychology

Associations have been found between positive emotions, creative thinking, and overall wellbeing, suggesting environmental changes that may benefit staff productivity and innovation in the workplace (Yuan, 2015).

Factors explored include creating climates geared toward creativity, boosting challenge, trust, freedom, risk taking, low conflict, and even the beneficial effects of humor.

Undoubtedly, further innovation will be seen from marrying the two powerful and compelling new fields of positive psychology and cognitive psychology.

types of problem solving in cognitive psychology

17 Top-Rated Positive Psychology Exercises for Practitioners

Expand your arsenal and impact with these 17 Positive Psychology Exercises [PDF] , scientifically designed to promote human flourishing, meaning, and wellbeing.

Created by Experts. 100% Science-based.

We have many tools, worksheets, and exercises to explore and improve attention, problem-solving, and the ability to regulate emotions.

Why not download our free emotional intelligence pack and try out the powerful tools contained within?

  • Building Emotional Awareness In this exercise, we foster emotional intelligence by mindfully attending to existing emotional states.
  • Identifying False Beliefs About Emotions Our beliefs often operate outside of conscious awareness. This exercise addresses clients’ basic and often unconscious assumptions about their emotions.

Other free resources include:

  • Skills for Regulating Emotion We can learn to manage our emotions by focusing on more positive experiences than negative ones.
  • Emotional Repetition and Attention Remodeling Identifying phrases used to describe ourselves can help desensitize negative feelings .

More extensive versions of the following tools are available with a subscription to the Positive Psychology Toolkit© , but here is a brief overview:

  • Creating Savoring Rituals It’s possible to increase positive emotions by sharpening our sensory perceptions via savoring.

Learning to focus can help.

Step one – Identify everyday activities that bring you pleasure. Step two – Focus on experiencing pleasure as it happens when doing these activities.

At the end of the week, take some time to record your reflections on creating savoring rituals.

  • Extracting Strengths From Problems Surprisingly, using our strengths too much can harm our problem-solving ability.

In this exercise, we examine an existing issue in a client’s life:

Step one – Describe a current problem. Step two – Identify the problematic context or life domain. Step three – Identify the problematic behavior in yourself. Step four – Recognize your underlying strength. Step five – Identify what you can do to remedy the problem.

If you’re looking for more science-based ways to help others enhance their wellbeing, check out this signature collection of 17 validated positive psychology tools for practitioners. Use them to help others flourish and thrive.

Cognitive psychology is crucial in our search for understanding how we interact with and make sense of a constantly changing and potentially harmful environment.

Not only that, it offers insight into what happens when things go wrong and the likely impact on our wellbeing and ability to cope with life events.

Cognitive psychology’s strength is its willingness to embrace research findings from many other disciplines, combining them with existing psychological theory to create new models of cognition.

The tasks we appear to carry out unconsciously are a great deal more complex than they might first appear. Perception, attention, problem-solving, language comprehension and production, and decision-making often happen without intentional thought and yet have enormous consequences on our lives.

Use this article as a starting point to explore the many and diverse aspects of cognitive psychology. Consider their relationships with associated research fields and reflect on the importance of understanding cognition in helping clients overcome complex events or circumstances.

We hope you enjoyed reading this article. Don’t forget to download our three Positive Psychology Exercises for free .

  • Eysenck, M. W., & Keane, M. T. (2015). Cognitive psychology: A student’s handbook . Psychology Press.
  • Goldstein, E. B. (2011). Cognitive psychology . Wadsworth, Cengage Learning.
  • Gross, R. D. (2020). Psychology: The science of mind and behaviour . Hodder and Stoughton.
  • Kuhn, G., & Findlay, J. M. (2010). Misdirection, attention and awareness: Inattentional blindness reveals temporal relationship between eye movements and visual awareness. The Quarterly Journal of Experimental Psychology , 63 (1), 136–146.
  • Moore, J. (1996). On the relation between behaviorism and cognitive psychology. Journal of Mind and Behavior , 17 (4), 345–367
  • Soon, C. S., Brass, M., Heinze, H., & Haynes, J. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience , 11 (5), 543–545.
  • Yuan, L. (2015). The happier one is, the more creative one becomes: An investigation on inspirational positive emotions from both subjective well-being and satisfaction at work. Psychology , 6 , 201–209.

' src=

Share this article:

Article feedback

What our readers think.

Janice L. Jamrosz

As a widowed Mother and Grandmother, whom was recently told by an adult child that maybe I should have “cognitive” testing done, I found this article to be very informative and refreshing. Having the ability to read and and learn about cognitive psychology is interesting as their are so many ways our brains are affected from the time we are born until the time we reach each and every stage in life. I have spent time with my grandchildren who are from age 19 months, through 15 years old , and spend time with children who are 35, 34, and 32, and my parents who are 88 and 84. I appreciate your article and your time in writing it. Sincerely,

Niranjan Dev Makker

Cognitive Psychology creates & build human capacity to push physical and mental limits. My concept of cognition in human behavior was judged by the most time I met my lawyer or the doctor. Most of the time while listening a pause, oh I see and it is perpetual transition to see. Cognition emergence is very vital support as we see & perceive. My practices in engineering solution are base on my cognitive sensibilities.You article provokes the same perceptions. Thank you

Let us know your thoughts Cancel reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

Related articles

Hierarchy of needs

Hierarchy of Needs: A 2024 Take on Maslow’s Findings

One of the most influential theories in human psychology that addresses our quest for wellbeing is Abraham Maslow’s Hierarchy of Needs. While Maslow’s theory of [...]

Emotional Development

Emotional Development in Childhood: 3 Theories Explained

We have all witnessed a sweet smile from a baby. That cute little gummy grin that makes us smile in return. Are babies born with [...]

Classical Conditioning Phobias

Using Classical Conditioning for Treating Phobias & Disorders

Does the name Pavlov ring a bell? Classical conditioning, a psychological phenomenon first discovered by Ivan Pavlov in the late 19th century, has proven to [...]

Read other articles by their category

  • Body & Brain (54)
  • Coaching & Application (58)
  • Compassion (26)
  • Counseling (51)
  • Emotional Intelligence (24)
  • Gratitude (18)
  • Grief & Bereavement (21)
  • Happiness & SWB (40)
  • Meaning & Values (27)
  • Meditation (20)
  • Mindfulness (44)
  • Motivation & Goals (46)
  • Optimism & Mindset (34)
  • Positive CBT (30)
  • Positive Communication (23)
  • Positive Education (48)
  • Positive Emotions (32)
  • Positive Leadership (20)
  • Positive Parenting (16)
  • Positive Psychology (34)
  • Positive Workplace (37)
  • Productivity (18)
  • Relationships (46)
  • Resilience & Coping (39)
  • Self Awareness (21)
  • Self Esteem (38)
  • Strengths & Virtues (32)
  • Stress & Burnout Prevention (35)
  • Theory & Books (46)
  • Therapy Exercises (37)
  • Types of Therapy (64)

3 Positive Psychology Tools (PDF)

blog

Cognitive Errors and their Impacts in Psychology

user

2 Minutes Psychology

Sep 10, 2025

As humans, we often rely on our intuition and experience to make decisions. However, our thinking patterns are prone to cognitive errors - biases or distortions in our thinking that affect our judgment and decision-making process. These errors can lead to faulty reasoning, poor judgments, and wrong conclusions.

In this article, we will explore the concept of cognitive errors in psychology and how they impact your decision-making process. We will delve deeper into various types of cognitive errors, such as confirmation bias, availability heuristic, and anchoring bias, and provide examples to help you understand their effects. We will also offer strategies to mitigate the impact of these biases and make more informed choices.

Key Takeaways

  • Cognitive errors are biases or distortions in our thinking that can hinder effective decision-making .
  • Confirmation bias, availability heuristic, and anchoring bias are common cognitive errors that can significantly influence our judgments.
  • To minimize the impact of cognitive errors, we need to be self-aware , practice critical thinking, seek different perspectives, and employ logical reasoning.

Understanding Cognitive Errors

Before delving deeper into the different types of cognitive errors, it's essential to have a clear understanding of what they are. In psychology, cognitive errors refer to the systematic ways in which our judgment and decision-making processes can become flawed, leading to inaccurate conclusions or decisions.

These errors are often based on biases, assumptions, and heuristics (mental shortcuts), which can lead to distorted perceptions of reality. While cognitive errors are common, they can significantly affect our lives, from small decisions to more significant life choices.

Types of Cognitive Errors

There are various types of cognitive errors, each with its own set of characteristics and effects on our decision-making process. Some of the most common cognitive error:

Confirmation Bias

Looking for evidence that supports our pre-existing beliefs and ignoring information that contradicts them.

Availability Heuristic

Over-relying on easily accessible or memorable examples when making decisions.

Anchoring Bias

Being influenced by the first piece of information we encounter when making decisions.

Understanding these errors and how they impact our decision-making process is crucial in avoiding their pitfalls. In the following sections, we will explore each cognitive error in more depth, providing examples and techniques on how to mitigate their impact.

Confirmation bias and its impact on decision making

Confirmation bias is a cognitive error that can significantly alter one's decision-making process. It occurs when an individual seeks out or interprets information in a way that supports their pre-existing beliefs or hypotheses, while ignoring or rejecting any contradictory evidence.

This means that confirmation bias can prevent us from objectively evaluating information and forming unbiased opinions. It can lead to snap judgments, narrow-mindedness, and an inability to see alternative perspectives or solutions.

For example, imagine a hiring manager who believes that Ivy League graduates are the best candidates. Despite receiving applications from qualified candidates who did not attend Ivy League schools, the hiring manager only focuses on the Ivy League applicants and ultimately hires one of them, potentially overlooking a more qualified candidate.

To mitigate the impact of confirmation bias, individuals can try to actively seek out and consider opposing viewpoints, gather various sources of information, and remain open to changing their opinions based on new evidence. Additionally, practicing self-awareness and acknowledging one's own biases can help prevent confirmation bias from influencing decision-making processes.

The role of availability heuristic in decision making

The availability heuristic is a cognitive error where individuals make decisions based on information easily accessible in their mind. This mental shortcut can lead to biases in decision making that favor the most recent or vivid information, rather than more comprehensive and accurate data.

For example, imagine a person trying to decide whether to invest in a particular stock. They may rely on recent news headlines about the company rather than conducting thorough research on its financial performance. The availability heuristic can also occur in personal relationships, where we may base our opinions on the most memorable or emotional experiences rather than looking at the whole picture.

To overcome the impact of the availability heuristic, it is important to take a step back and consider all available information, rather than relying on what comes to mind first. It can also be helpful to seek out diverse viewpoints and perspectives to gain a more comprehensive understanding of the decision.

Join Free Virtual Chat Therapy- Let's Meet powered by 2 Minutes Psychology

Anchoring Bias and Its Influence on Decision Making

Another cognitive error that can significantly influence decision making is anchoring bias, where people rely too heavily on the first piece of information presented when making decisions. This can lead to distorted judgments and suboptimal choices.

For instance, let's say you're shopping for a new car. The salesperson tells you the price of a car is $50,000, but you think it's too expensive. However, when the salesperson shows you another car for $70,000, suddenly the original $50,000 price seems more reasonable, and you're more likely to buy it.

Anchoring bias affects many aspects of our lives, including financial decisions, career choices, and even relationships. It can be challenging to overcome, but there are strategies to minimize its impact.

To mitigate the influence of anchoring bias, it's crucial to consider multiple perspectives and sources of information. Avoid making decisions based solely on the initial information presented to you.

Additionally, taking time to evaluate different options independently and without external influences can help reduce the effects of anchoring bias. Remember that just because information is presented first doesn't mean it's the most accurate or relevant.

The impact of cognitive errors on problem-solving

Cognitive errors can seriously hinder effective problem-solving skills. When we rely on faulty reasoning, we may struggle to identify the best solutions or fail to recognize potential risks or drawbacks.

One common cognitive error that impacts problem-solving is confirmation bias. This occurs when we search for evidence that supports our existing beliefs while disregarding information that contradicts them. It can lead us to overlook alternative perspectives or creative solutions.

Another cognitive error that affects problem-solving is the anchoring bias. This occurs when we rely too heavily on the first piece of information we receive, even if it is irrelevant or misleading. It can prevent us from considering other factors or gathering additional information that could help us make a better decision.

To improve problem-solving skills and avoid these cognitive errors, it is essential to approach problems with an open mind and seek out alternative perspectives. One strategy is to seek diverse opinions and feedback from others to challenge our assumptions and biases. Additionally, it can be helpful to break down complex problems into smaller, more manageable tasks to avoid feeling overwhelmed and making rash decisions.

It is also critical to practice self-reflection and introspection to recognize and address cognitive errors when they arise. By acknowledging our biases and limitations, we can minimize their impact on our decision-making process and improve our problem-solving skills over time.

Overcoming Cognitive Errors in Decision Making

While cognitive errors can be pervasive and challenging to overcome, there are effective ways to mitigate their impact. By engaging in critical thinking, seeking diverse perspectives, and employing logical reasoning, you can make more informed decisions.

Critical Thinking

Critical thinking involves analyzing information objectively and questioning assumptions underlying your beliefs. It helps you develop a more nuanced understanding of a situation and avoid jumping to conclusions. To strengthen your critical thinking skills:

  • Examine evidence carefully and evaluate its reliability.
  • Consider alternative explanations for a situation.
  • Identify and challenge your own biases and assumptions.

Seeking Diverse Perspectives

Seeking out different perspectives can broaden your understanding of a situation and help you make more informed decisions. This can involve:

  • Talking to people with varied backgrounds and experiences.
  • Reading diverse viewpoints on a topic.
  • Staying open to feedback and constructive criticism.

Employing Logical Reasoning

Logical reasoning involves using reasoning and evidence to draw conclusions. It helps you avoid making decisions based on faulty assumptions or incomplete information. To employ logical reasoning:

  • Identify the assumptions underlying a decision.
  • Consider the evidence for and against a particular choice.
  • Weigh the pros and cons of different options.

By applying critical thinking, seeking diverse perspectives, and employing logical reasoning, you can minimize the impact of cognitive errors on your decision-making process and make more informed and effective decisions.

Cognitive errors in everyday life

Cognitive errors can impact various aspects of our daily lives. Here are a few scenarios where these biases may manifest:

Cognitive errors in Personal finance

Anchoring bias may lead someone to accept a car dealer's initial price offer without negotiating, or confirmation bias may lead someone to only seek out information that supports their preferred investment strategy.

Cognitive errors in Relationships

Confirmation bias may cause someone to only notice the positive aspects of their partner, ignoring any negative behavior, or the availability heuristic may lead someone to assume that all members of a particular group have similar traits based on a few bad experiences with individuals from that group.

Cognitive errors in Career choices

Confirmation bias may cause someone to only consider career options that align with their preconceived notions of success, ignoring other opportunities that may be a better fit. The anchoring bias may cause someone to focus on their current salary when negotiating a pay raise, rather than researching industry standards or their own performance metrics.

By recognizing these biases, you can take steps to avoid them and make more informed decisions in various areas of your life.

The importance of self-awareness in combating cognitive errors

Self-awareness is the key to combating cognitive errors. The ability to recognize and acknowledge the biases affecting your decision-making process is the first step towards overcoming them. Here are some ways to cultivate self-awareness:

Introspection: 

Take the time to reflect on your thoughts, feelings, and actions. Ask yourself why you think or feel a certain way, and try to identify any underlying biases or assumptions that may be affecting your judgment.

Mindfulness :  

Practice being present in the moment and observing your thoughts and feelings without judgment. This can help you become more aware of your cognitive processes and notice when biases are at play.

Seeking feedback :  

Ask friends, family, or colleagues for feedback on your thought processes and decision-making. This can provide an outside perspective and highlight any blind spots you may have.

The role of reflection

Reflection is an essential aspect of self-awareness. Taking the time to reflect on your decisions and their outcomes can help you identify patterns, biases, and areas for improvement. It can also help you develop a growth mindset, where you view your mistakes as opportunities for learning and growth.

"It is not that I'm so smart. But I stay with the questions much longer." - Albert Einstein

Reflection involves asking yourself questions such as:

  • What were the factors that influenced my decision?
  • What assumptions did I make?
  • What biases may have affected my judgment?
  • What could I have done differently?

By answering these questions honestly, you can gain insights into your cognitive processes and develop strategies to overcome cognitive errors.

Seeking professional help for cognitive errors

While self-awareness and the strategies discussed in this article can help mitigate the impact of cognitive errors, seeking professional help may be necessary in some cases. Psychologists and therapists are trained to identify and address cognitive biases that may be affecting your decision-making process. They can provide guidance and support to help you better understand your thought patterns and develop effective strategies for overcoming cognitive errors.

If you are struggling with cognitive errors that are impacting your personal or professional life, seeking professional help can be a valuable step towards achieving your goals and making more informed choices. Psychologists and therapists can help you learn to recognize and address cognitive biases, allowing you to approach decision-making with greater clarity and confidence. (Join Let's Meet - Free Virtual Chat Therapy)

Cognitive errors are a common occurrence in decision making, and they can have significant impacts on our lives. However, by understanding these errors, we can take steps to mitigate their effects and make more informed choices. Throughout this article, we explored various types of cognitive errors, including confirmation bias, availability heuristic, and anchoring bias, and discussed their influence on decision making. We also provided strategies to overcome these biases and improve problem-solving skills.

Self-awareness is a crucial element in combating cognitive errors. By reflecting on our thoughts and attitudes, we can recognize when we are falling victim to these biases and take corrective measures. Seeking professional help may also be necessary in some cases, and psychologists or therapist s can provide guidance and support. Join Community to share your thoughts and get expert help- Let's Meet

Apply What You've Learned

As you go about your daily life, pay attention to situations where cognitive errors may be influencing your decisions. Try applying the techniques and strategies outlined in this article to overcome these biases. With practice, you can develop a more critical and analytical approach to decision making, and set yourself up for success in all aspects of life.

Q: What are cognitive errors in psychology and how do they affect your decision making?

A: Cognitive errors, also known as cognitive biases, are systematic patterns of thinking that can distort our judgment and decision-making process. These errors occur due to the way our brains process information and can lead to irrational or illogical choices. Understanding cognitive errors is essential because they can significantly impact the quality of our decisions.

Q: How can I understand cognitive errors?

A: Understanding cognitive errors involves familiarizing yourself with their different types and how they manifest in real-life situations. By learning about confirmation bias, availability heuristic, and anchoring bias, among others, you can recognize these errors when they occur and take steps to mitigate their effects.

Q: What is confirmation bias and how does it impact decision making?

A: Confirmation bias is the tendency to seek and interpret information in a way that confirms our existing beliefs or biases, while disregarding evidence that contradicts them. This bias can lead to distorted decision making as it narrows our perspective and limits our ability to consider alternative viewpoints or objectively evaluate information.

Q: How does the availability heuristic influence decision making?

A: The availability heuristic is a cognitive shortcut where we rely on immediate examples or instances that come to mind easily when making judgments or decisions. This bias can lead to inaccurate assessments as we may give more weight to information that is readily available, while ignoring or underestimating less accessible or less memorable data.

Q: What is anchoring bias and how does it influence decision making?

A: Anchoring bias refers to the tendency to rely heavily on the first piece of information encountered when making decisions, even if it may be irrelevant or arbitrary. This bias can lead to insufficient adjustment or overreliance on initial data, resulting in biased judgments and decisions.

Q: How do cognitive errors affect problem-solving?

A: Cognitive errors can hamper effective problem-solving by introducing biases and limiting our ability to think critically and objectively. These errors can lead to faulty reasoning, flawed decision-making, and hinder our problem-solving skills. Recognizing and avoiding common cognitive pitfalls can enhance our problem-solving capabilities.

Q: How can I overcome cognitive errors in decision making ?

A: Overcoming cognitive errors involves developing critical thinking skills, seeking different perspectives, and employing logical reasoning. By consciously challenging our biases, questioning assumptions, and considering alternative viewpoints, we can reduce the impact of cognitive errors on our decision making.

Q: In what ways do cognitive errors manifest in everyday life?

A: Cognitive errors can manifest in various aspects of our everyday lives, such as personal finance, relationships, and career choices. These biases can impact our financial decisions, lead to misunderstandings or conflicts in relationships, and affect our career choices. Being aware of these biases can help us make more informed choices in these areas.

Q: How does self-awareness combat cognitive errors?

A: Self-awareness plays a crucial role in combating cognitive errors. By engaging in introspection, practicing mindfulness, and reflecting on our thoughts and behaviors, we can become more aware of our biases. This awareness allows us to recognize when we're falling into cognitive pitfalls and take steps to address and mitigate their impact.

Q: When should I seek professional help for cognitive errors?

A: In some cases, seeking professional help from psychologists or therapists may be necessary to effectively address cognitive errors. These professionals can provide guidance, support, and specialized techniques to help individuals overcome deep-seated biases and improve their decision-making abilities. If cognitive errors are significantly impacting your life, seeking professional help is a viable option. 

Corporate life

Let's Meet 2 Minutes Psychology

Narcissist Personality

Do you think depression is particularly related to extreme sadness, relaxation is essential., life is like a stuck, related posts.

corporate-employees-and-mental-health

Corporate Employees and Mental Health

8-signs-of-toxic-people

8 Signs of Toxic People

common-recurrent-dreams-and-their-psychological-meanings

Common Recurrent Dreams and their Psychological Meanings

Substance Use Disorder

Anxiety Disorder

Decision Making

Eating Disorder

Communication

Cognitive Error

Personality Disorder

Psychological Assessment

FREQUENTLY ASKED QUESTIONS

Prepare for your exams

  • Guidelines and tips

Study with the several resources on Docsity

Earn points by helping other students or get them with a premium plan

Prepare for your exams with the study notes shared by other students like you on Docsity

The best documents sold by students who completed their studies

Summarize your documents, ask them questions, convert them into quizzes and concept maps

Clear up your doubts by reading the answers to questions asked by your fellow students

Earn points to download

For each uploaded document

For each given answer (max 1 per day)

Choose a premium plan with all the points you need

Study Opportunities

Connect with the world's best universities and choose your course of study

Ask the community for help and clear up your study doubts

Discover the best universities in your country according to Docsity users

Free resources

Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors

From our blog

Problem Solving, Types of Problem - Cognitive Psychology - Lecture Slides, Slides of Cognitive Psychology

Introduction to Problem Solving, Types of Problem Solving, Types of Solutions, Model of Problem Solving, Classic Problem Solving Terms, Processes Problem Solving, Problem Space are key points of this lecture. Cognitive Psychology is more interesting subject than any other in all psychology.

Typology: Slides

Limited-time offer

Uploaded on 11/19/2012

burhn

161 documents

On special offer

Related documents

Partial preview of the text.

Lecture notes

Study notes

Document Store

Latest questions

Biology and Chemistry

Psychology and Sociology

United States of America (USA)

United Kingdom

Sell documents

Seller's Handbook

How does Docsity work

United States of America

Terms of Use

Cookie Policy

Cookie setup

Privacy Policy

Sitemap Resources

Sitemap Latest Documents

Sitemap Languages and Countries

Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    types of problem solving in cognitive psychology

  2. different stages of problem solving

    types of problem solving in cognitive psychology

  3. stages of problem solving process in cognitive psychology

    types of problem solving in cognitive psychology

  4. Heuristics decisions and mental thinking shortcut approach outline

    types of problem solving in cognitive psychology

  5. Cognitive Psychology

    types of problem solving in cognitive psychology

  6. What is Cognitive Psychology?

    types of problem solving in cognitive psychology

VIDEO

  1. B .Basic Data Types (problem solving )

  2. 809 Unraveling the Psychology of Problem Solving From Curiosity to Reward 1

  3. Psychology: Thinking and Problem Solving

  4. PROBLEM SOLVING IN COGNITIVE PSYCHOLOGY

  5. Key issues in the study of cognitive psychology

  6. Types of Problem Solving

COMMENTS

  1. Problem Solving

    Cognitive—Problem solving occurs within the problem solver's cognitive system and can only be inferred indirectly from the problem solver's behavior (including biological changes, introspections, and actions during problem solving).. Process—Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of ...

  2. Problem-Solving Strategies and Obstacles

    Several mental processes are at work during problem-solving. Among them are: Perceptually recognizing the problem. Representing the problem in memory. Considering relevant information that applies to the problem. Identifying different aspects of the problem. Labeling and describing the problem.

  3. 7.3 Problem-Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  4. PDF COGNITION Chapter 12: Problem Solving Cognitive Psychology

    Fixation occurs when solver is fixated on wrong approach to problem. It often is result of past experience. Fixation refers to the blocking of solution paths to a problem that is caused by past experiences related to the problem. NEGATIVE SET (set effects) - bias or tendency to solve a problem a particular way.

  5. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  6. Solving Problems the Cognitive-Behavioral Way

    Key points. Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to ...

  7. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  8. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  9. 6.2: Problem Solving Strategies

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  10. Solving Problems the Cognitive-Behavioral Way

    Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to identify the ...

  11. Cognitive Approach In Psychology

    Cognitive psychology studies mental processes, including how people perceive, think, remember, learn, solve problems, and make decisions. Cognitive psychologists try to build cognitive models of the information processing that occurs inside people's minds, including perception, attention, language, memory, thinking, and consciousness ...

  12. PDF COGNITIVE PSYCHOLOGY

    Cognitive psychology is the field of psychology dedicated to examining how people think. It attempts to explain how and why we think the way we do by studying the interactions among human thinking, emotion, creativity, language, and problem solving, in addition to other cognitive processes.

  13. Cognitive Psychology: Definition, Theories, & History

    The word "cognitive" refers to thinking. So cognitive psychology is a branch of psychology that aims to understand mental processes such as perception, learning, memory, language, decision-making, and problem-solving. It also examines how these processes affect our behavior and our emotions (APA, 2023).

  14. Problem Solving Overview & Strategies

    Learn the definition of problem-solving, different types of problems, and problem-solving strategies. ... Cognitive Perspective in Psychology. Cognitive Perspective | Definition & Examples 10:13 ...

  15. On the cognitive process of human problem solving

    The combination of the above cases in problem solving can be summarized in Table 1, which identifies four types of problem solving, i.e., proof, instance, case study, and explorative/creative problem solving.A special case in Table 1 is that when both the goal and path are known, the case is only a solved instance for a given problem. In a related work (Wang, 2008d), the cognitive process of ...

  16. Cognitive Psychology: How Scientists Study the Mind

    Cognitive psychology is the branch of psychology ... and problem-solving abilities affect how and why you think the way you do. Cognitive psychology attempts to measure different types of ...

  17. Cognitive Psychology: The Science of How We Think

    Cognitive psychology is the study of internal mental processes—all of the workings inside your brain, including perception, thinking, memory, attention, language, problem-solving, and learning. Learning about how people think and process information helps researchers and psychologists understand the human brain and assist people with ...

  18. PDF COGNITION Chapter 9: Problem Solving Fundamentals of Cognitive Psychology

    Fixation occurs when solver is fixated on wrong approach to problem. It often is result of past experience. Fixation refers to the blocking of solution paths to a problem that is caused by past experiences related to the problem. NEGATIVE SET (set effects) - bias or tendency to solve a problem a particular way.

  19. Problem Solving

    In this theory, people solve problems by searching in a problem space. The problem space consists of the initial (current) state, the goal state, and all possible states in between. The actions that people take in order to move from one state to another are known as operators. Consider the eight puzzle. The problem space for the eight puzzle ...

  20. What Is the Cognitive Psychology Approach? 12 Key Theories

    Cognitive Psychology vs Behaviorism. Moore (1996) recognized the tensions of the paradigm shift from behaviorism to cognitive psychology.. While research into cognitive psychology, cognitive neuropsychology, cognitive neuroscience, and computational cognitive science is now widely accepted as the driving force behind understanding mental processes (such as memory, perception, problem-solving ...

  21. Analysing Complex Problem-Solving Strategies from a Cognitive

    Generally, problem solving is the thinking that occurs if we want "to overcome barriers between a given state and a desired goal state by means of behavioural and/or cognitive, multistep activities" (Frensch and Funke 1995, p. 18). It has also been considered as one of the most important skills for successful learning in the 21st century.

  22. Cognitive Errors and their Impacts in Psychology

    A: Cognitive errors can hamper effective problem-solving by introducing biases and limiting our ability to think critically and objectively. These errors can lead to faulty reasoning, flawed decision-making, and hinder our problem-solving skills. Recognizing and avoiding common cognitive pitfalls can enhance our problem-solving capabilities. Q ...

  23. Problem Solving, Types of Problem

    Introduction to Problem Solving, Types of Problem Solving, Types of Solutions, Model of Problem Solving, Classic Problem Solving Terms, Processes Problem Solving, Problem Space are key points of this lecture. Cognitive Psychology is more interesting subject than any other in all psychology.

  24. Does presentation size of instructional materials influence the split

    Applied Cognitive Psychology publishes psychological analyses of memory, learning, thinking, problem solving, language, and consciousness. Abstract The split-attention effect posits that learning outcomes are negatively impacted when interrelated text and graphics are spatially segregated rather than cohesively integrated.

  25. Gamifying cognitive behavioral therapy techniques on smartphones for

    Conclusions: This paper presents the development process of gamifying CBT and related therapeutic techniques in BlueLine game scenarios. A scenario can harbor multiple techniques, including behavioral activation, self-monitoring, interpersonal skills, positive psychology, relaxation and mindful activities, and problem-solving.

  26. Construction of a teaching mechanism for ideological and political

    Abstract. This study focuses on the problem of 'teachers' teaching' and 'students' learning' in college education courses. It aims to introduce the Deep Learning theory into the teaching of ideological and political theory courses in universities; deepen the theoretical framework of education courses and the associated learning, maintenance, promotion, and support mechanisms; and ...

  27. Dr. Sanjay Gupta: It's time for President Biden to undergo detailed

    Trump said he took a second cognitive test for his last physical exam at the end of 2023 and "aced it." In a note at the end of last year, Dr. Bruce Aronwald wrote that Trump's cognitive ...