Why is it important to do a literature review in research?

Why is it important to do a literature review in research?

Scientific Communication in Healthcare industry

The importance of scientific communication in the healthcare industry

importance and role of biostatistics in clinical research, biostatistics in public health, biostatistics in pharmacy, biostatistics in nursing,biostatistics in clinical trials,clinical biostatistics

The Importance and Role of Biostatistics in Clinical Research

 “A substantive, thorough, sophisticated literature review is a precondition for doing substantive, thorough, sophisticated research”. Boote and Baile 2005

Authors of manuscripts treat writing a literature review as a routine work or a mere formality. But a seasoned one knows the purpose and importance of a well-written literature review.  Since it is one of the basic needs for researches at any level, they have to be done vigilantly. Only then the reader will know that the basics of research have not been neglected.

Importance of Literature Review In Research

The aim of any literature review is to summarize and synthesize the arguments and ideas of existing knowledge in a particular field without adding any new contributions.   Being built on existing knowledge they help the researcher to even turn the wheels of the topic of research.  It is possible only with profound knowledge of what is wrong in the existing findings in detail to overpower them.  For other researches, the literature review gives the direction to be headed for its success. 

The common perception of literature review and reality:

As per the common belief, literature reviews are only a summary of the sources related to the research. And many authors of scientific manuscripts believe that they are only surveys of what are the researches are done on the chosen topic.  But on the contrary, it uses published information from pertinent and relevant sources like

  • Scholarly books
  • Scientific papers
  • Latest studies in the field
  • Established school of thoughts
  • Relevant articles from renowned scientific journals

and many more for a field of study or theory or a particular problem to do the following:

  • Summarize into a brief account of all information
  • Synthesize the information by restructuring and reorganizing
  • Critical evaluation of a concept or a school of thought or ideas
  • Familiarize the authors to the extent of knowledge in the particular field
  • Encapsulate
  • Compare & contrast

By doing the above on the relevant information, it provides the reader of the scientific manuscript with the following for a better understanding of it:

  • It establishes the authors’  in-depth understanding and knowledge of their field subject
  • It gives the background of the research
  • Portrays the scientific manuscript plan of examining the research result
  • Illuminates on how the knowledge has changed within the field
  • Highlights what has already been done in a particular field
  • Information of the generally accepted facts, emerging and current state of the topic of research
  • Identifies the research gap that is still unexplored or under-researched fields
  • Demonstrates how the research fits within a larger field of study
  • Provides an overview of the sources explored during the research of a particular topic

Importance of literature review in research:

The importance of literature review in scientific manuscripts can be condensed into an analytical feature to enable the multifold reach of its significance.  It adds value to the legitimacy of the research in many ways:

  • Provides the interpretation of existing literature in light of updated developments in the field to help in establishing the consistency in knowledge and relevancy of existing materials
  • It helps in calculating the impact of the latest information in the field by mapping their progress of knowledge.
  • It brings out the dialects of contradictions between various thoughts within the field to establish facts
  • The research gaps scrutinized initially are further explored to establish the latest facts of theories to add value to the field
  • Indicates the current research place in the schema of a particular field
  • Provides information for relevancy and coherency to check the research
  • Apart from elucidating the continuance of knowledge, it also points out areas that require further investigation and thus aid as a starting point of any future research
  • Justifies the research and sets up the research question
  • Sets up a theoretical framework comprising the concepts and theories of the research upon which its success can be judged
  • Helps to adopt a more appropriate methodology for the research by examining the strengths and weaknesses of existing research in the same field
  • Increases the significance of the results by comparing it with the existing literature
  • Provides a point of reference by writing the findings in the scientific manuscript
  • Helps to get the due credit from the audience for having done the fact-finding and fact-checking mission in the scientific manuscripts
  • The more the reference of relevant sources of it could increase more of its trustworthiness with the readers
  • Helps to prevent plagiarism by tailoring and uniquely tweaking the scientific manuscript not to repeat other’s original idea
  • By preventing plagiarism , it saves the scientific manuscript from rejection and thus also saves a lot of time and money
  • Helps to evaluate, condense and synthesize gist in the author’s own words to sharpen the research focus
  • Helps to compare and contrast to  show the originality and uniqueness of the research than that of the existing other researches
  • Rationalizes the need for conducting the particular research in a specified field
  • Helps to collect data accurately for allowing any new methodology of research than the existing ones
  • Enables the readers of the manuscript to answer the following questions of its readers for its better chances for publication
  • What do the researchers know?
  • What do they not know?
  • Is the scientific manuscript reliable and trustworthy?
  • What are the knowledge gaps of the researcher?

22. It helps the readers to identify the following for further reading of the scientific manuscript:

  • What has been already established, discredited and accepted in the particular field of research
  • Areas of controversy and conflicts among different schools of thought
  • Unsolved problems and issues in the connected field of research
  • The emerging trends and approaches
  • How the research extends, builds upon and leaves behind from the previous research

A profound literature review with many relevant sources of reference will enhance the chances of the scientific manuscript publication in renowned and reputed scientific journals .

References:

http://www.math.montana.edu/jobo/phdprep/phd6.pdf

journal Publishing services  |  Scientific Editing Services  |  Medical Writing Services  |  scientific research writing service  |  Scientific communication services

Related Topics:

Meta Analysis

Scientific Research Paper Writing

Medical Research Paper Writing

Scientific Communication in healthcare

pubrica academy

pubrica academy

Related posts.

need and importance of review of literature in research

Statistical analyses of case-control studies

need and importance of review of literature in research

PUB - Selecting material (e.g. excipient, active pharmaceutical ingredient) for drug development

Selecting material (e.g. excipient, active pharmaceutical ingredient, packaging material) for drug development

need and importance of review of literature in research

PUB - Health Economics of Data Modeling

Health economics in clinical trials

Comments are closed.

University of Texas

  • University of Texas Libraries

Literature Reviews

  • What is a literature review?
  • Steps in the Literature Review Process
  • Define your research question
  • Determine inclusion and exclusion criteria
  • Choose databases and search
  • Review Results
  • Synthesize Results
  • Analyze Results
  • Librarian Support

What is a Literature Review?

A literature or narrative review is a comprehensive review and analysis of the published literature on a specific topic or research question. The literature that is reviewed contains: books, articles, academic articles, conference proceedings, association papers, and dissertations. It contains the most pertinent studies and points to important past and current research and practices. It provides background and context, and shows how your research will contribute to the field. 

A literature review should: 

  • Provide a comprehensive and updated review of the literature;
  • Explain why this review has taken place;
  • Articulate a position or hypothesis;
  • Acknowledge and account for conflicting and corroborating points of view

From  S age Research Methods

Purpose of a Literature Review

A literature review can be written as an introduction to a study to:

  • Demonstrate how a study fills a gap in research
  • Compare a study with other research that's been done

Or it can be a separate work (a research article on its own) which:

  • Organizes or describes a topic
  • Describes variables within a particular issue/problem

Limitations of a Literature Review

Some of the limitations of a literature review are:

  • It's a snapshot in time. Unlike other reviews, this one has beginning, a middle and an end. There may be future developments that could make your work less relevant.
  • It may be too focused. Some niche studies may miss the bigger picture.
  • It can be difficult to be comprehensive. There is no way to make sure all the literature on a topic was considered.
  • It is easy to be biased if you stick to top tier journals. There may be other places where people are publishing exemplary research. Look to open access publications and conferences to reflect a more inclusive collection. Also, make sure to include opposing views (and not just supporting evidence).

Source: Grant, Maria J., and Andrew Booth. “A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies.” Health Information & Libraries Journal, vol. 26, no. 2, June 2009, pp. 91–108. Wiley Online Library, doi:10.1111/j.1471-1842.2009.00848.x.

Meryl Brodsky : Communication and Information Studies

Hannah Chapman Tripp : Biology, Neuroscience

Carolyn Cunningham : Human Development & Family Sciences, Psychology, Sociology

Larayne Dallas : Engineering

Janelle Hedstrom : Special Education, Curriculum & Instruction, Ed Leadership & Policy ​

Susan Macicak : Linguistics

Imelda Vetter : Dell Medical School

For help in other subject areas, please see the guide to library specialists by subject .

Periodically, UT Libraries runs a workshop covering the basics and library support for literature reviews. While we try to offer these once per academic year, we find providing the recording to be helpful to community members who have missed the session. Following is the most recent recording of the workshop, Conducting a Literature Review. To view the recording, a UT login is required.

  • October 26, 2022 recording
  • Last Updated: Oct 26, 2022 2:49 PM
  • URL: https://guides.lib.utexas.edu/literaturereviews

Creative Commons License

Libraries | Research Guides

Literature reviews, what is a literature review, learning more about how to do a literature review.

  • Planning the Review
  • The Research Question
  • Choosing Where to Search
  • Organizing the Review
  • Writing the Review

A literature review is a review and synthesis of existing research on a topic or research question. A literature review is meant to analyze the scholarly literature, make connections across writings and identify strengths, weaknesses, trends, and missing conversations. A literature review should address different aspects of a topic as it relates to your research question. A literature review goes beyond a description or summary of the literature you have read. 

  • Sage Research Methods Core Collection This link opens in a new window SAGE Research Methods supports research at all levels by providing material to guide users through every step of the research process. SAGE Research Methods is the ultimate methods library with more than 1000 books, reference works, journal articles, and instructional videos by world-leading academics from across the social sciences, including the largest collection of qualitative methods books available online from any scholarly publisher. – Publisher

Cover Art

  • Next: Planning the Review >>
  • Last Updated: Jan 17, 2024 10:05 AM
  • URL: https://libguides.northwestern.edu/literaturereviews
  • UConn Library
  • Literature Review: The What, Why and How-to Guide
  • Introduction

Literature Review: The What, Why and How-to Guide — Introduction

  • Getting Started
  • How to Pick a Topic
  • Strategies to Find Sources
  • Evaluating Sources & Lit. Reviews
  • Tips for Writing Literature Reviews
  • Writing Literature Review: Useful Sites
  • Citation Resources
  • Other Academic Writings

What are Literature Reviews?

So, what is a literature review? "A literature review is an account of what has been published on a topic by accredited scholars and researchers. In writing the literature review, your purpose is to convey to your reader what knowledge and ideas have been established on a topic, and what their strengths and weaknesses are. As a piece of writing, the literature review must be defined by a guiding concept (e.g., your research objective, the problem or issue you are discussing, or your argumentative thesis). It is not just a descriptive list of the material available, or a set of summaries." Taylor, D.  The literature review: A few tips on conducting it . University of Toronto Health Sciences Writing Centre.

Goals of Literature Reviews

What are the goals of creating a Literature Review?  A literature could be written to accomplish different aims:

  • To develop a theory or evaluate an existing theory
  • To summarize the historical or existing state of a research topic
  • Identify a problem in a field of research 

Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews .  Review of General Psychology , 1 (3), 311-320.

What kinds of sources require a Literature Review?

  • A research paper assigned in a course
  • A thesis or dissertation
  • A grant proposal
  • An article intended for publication in a journal

All these instances require you to collect what has been written about your research topic so that you can demonstrate how your own research sheds new light on the topic.

Types of Literature Reviews

What kinds of literature reviews are written?

Narrative review: The purpose of this type of review is to describe the current state of the research on a specific topic/research and to offer a critical analysis of the literature reviewed. Studies are grouped by research/theoretical categories, and themes and trends, strengths and weakness, and gaps are identified. The review ends with a conclusion section which summarizes the findings regarding the state of the research of the specific study, the gaps identify and if applicable, explains how the author's research will address gaps identify in the review and expand the knowledge on the topic reviewed.

  • Example : Predictors and Outcomes of U.S. Quality Maternity Leave: A Review and Conceptual Framework:  10.1177/08948453211037398  

Systematic review : "The authors of a systematic review use a specific procedure to search the research literature, select the studies to include in their review, and critically evaluate the studies they find." (p. 139). Nelson, L. K. (2013). Research in Communication Sciences and Disorders . Plural Publishing.

  • Example : The effect of leave policies on increasing fertility: a systematic review:  10.1057/s41599-022-01270-w

Meta-analysis : "Meta-analysis is a method of reviewing research findings in a quantitative fashion by transforming the data from individual studies into what is called an effect size and then pooling and analyzing this information. The basic goal in meta-analysis is to explain why different outcomes have occurred in different studies." (p. 197). Roberts, M. C., & Ilardi, S. S. (2003). Handbook of Research Methods in Clinical Psychology . Blackwell Publishing.

  • Example : Employment Instability and Fertility in Europe: A Meta-Analysis:  10.1215/00703370-9164737

Meta-synthesis : "Qualitative meta-synthesis is a type of qualitative study that uses as data the findings from other qualitative studies linked by the same or related topic." (p.312). Zimmer, L. (2006). Qualitative meta-synthesis: A question of dialoguing with texts .  Journal of Advanced Nursing , 53 (3), 311-318.

  • Example : Women’s perspectives on career successes and barriers: A qualitative meta-synthesis:  10.1177/05390184221113735

Literature Reviews in the Health Sciences

  • UConn Health subject guide on systematic reviews Explanation of the different review types used in health sciences literature as well as tools to help you find the right review type
  • << Previous: Getting Started
  • Next: How to Pick a Topic >>
  • Last Updated: Sep 21, 2022 2:16 PM
  • URL: https://guides.lib.uconn.edu/literaturereview

Creative Commons

News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Conducting a literature review: why do a literature review, why do a literature review.

  • How To Find "The Literature"
  • Found it -- Now What?

Besides the obvious reason for students -- because it is assigned! -- a literature review helps you explore the research that has come before you, to see how your research question has (or has not) already been addressed.

You identify:

  • core research in the field
  • experts in the subject area
  • methodology you may want to use (or avoid)
  • gaps in knowledge -- or where your research would fit in

It Also Helps You:

  • Publish and share your findings
  • Justify requests for grants and other funding
  • Identify best practices to inform practice
  • Set wider context for a program evaluation
  • Compile information to support community organizing

Great brief overview, from NCSU

Want To Know More?

Cover Art

  • Next: How To Find "The Literature" >>
  • Last Updated: Dec 8, 2023 10:11 AM
  • URL: https://guides.lib.berkeley.edu/litreview

A Guide to Literature Reviews

Importance of a good literature review.

  • Conducting the Literature Review
  • Structure and Writing Style
  • Types of Literature Reviews
  • Citation Management Software This link opens in a new window
  • Acknowledgements

A literature review is not only a summary of key sources, but  has an organizational pattern which combines both summary and synthesis, often within specific conceptual categories . A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem. The analytical features of a literature review might:

  • Give a new interpretation of old material or combine new with old interpretations,
  • Trace the intellectual progression of the field, including major debates,
  • Depending on the situation, evaluate the sources and advise the reader on the most pertinent or relevant research, or
  • Usually in the conclusion of a literature review, identify where gaps exist in how a problem has been researched to date.

The purpose of a literature review is to:

  • Place each work in the context of its contribution to understanding the research problem being studied.
  • Describe the relationship of each work to the others under consideration.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.
  • Resolve conflicts amongst seemingly contradictory previous studies.
  • Identify areas of prior scholarship to prevent duplication of effort.
  • Point the way in fulfilling a need for additional research.
  • Locate your own research within the context of existing literature [very important].
  • << Previous: Definition
  • Next: Conducting the Literature Review >>
  • Last Updated: Jan 22, 2024 3:26 PM
  • URL: https://libguides.mcmaster.ca/litreview

Logo for RMIT Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

What is a literature review?

need and importance of review of literature in research

A literature review is a critical analysis of the literature related to your research topic. It evaluates and critiques the literature to establish a theoretical framework for your research topic and/or identify a gap in the existing research that your research will address.

A literature review is not a summary of the literature. You need to engage deeply and critically with the literature. Your literature review should show your understanding of the literature related to your research topic and lead to presenting a rationale for your research.

A literature review focuses on:

  • the context of the topic
  • key concepts, ideas, theories and methodologies
  • key researchers, texts and seminal works
  • major issues and debates
  • identifying conflicting evidence
  • the main questions that have been asked around the topic
  • the organisation of knowledge on the topic
  • definitions, particularly those that are contested
  • showing how your research will advance scholarly knowledge (generally referred to as identifying the ‘gap’).

This module will guide you through the functions of a literature review; the typical process of conducting a literature review (including searching for literature and taking notes); structuring your literature review within your thesis and organising its internal ideas; and styling the language of your literature review.

The purposes of a literature review

A literature review serves two main purposes:

1) To show awareness of the present state of knowledge in a particular field, including:

  • seminal authors
  • the main empirical research
  • theoretical positions
  • controversies
  • breakthroughs as well as links to other related areas of knowledge.

2) To provide a foundation for the author’s research. To do that, the literature review needs to:

  • help the researcher define a hypothesis or a research question, and how answering the question will contribute to the body of knowledge;
  • provide a rationale for investigating the problem and the selected methodology;
  • provide a particular theoretical lens, support the argument, or identify gaps.

Before you engage further with this module, try the quiz below to see how much you already know about literature reviews.

Research and Writing Skills for Academic and Graduate Researchers Copyright © 2022 by RMIT University is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

Harvey Cushing/John Hay Whitney Medical Library

  • Collections
  • Research Help

YSN Doctoral Programs: Steps in Conducting a Literature Review

  • Biomedical Databases
  • Global (Public Health) Databases
  • Soc. Sci., History, and Law Databases
  • Grey Literature
  • Trials Registers
  • Data and Statistics
  • Public Policy
  • Google Tips
  • Recommended Books
  • Steps in Conducting a Literature Review

What is a literature review?

A literature review is an integrated analysis -- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.  That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

A literature review may be a stand alone work or the introduction to a larger research paper, depending on the assignment.  Rely heavily on the guidelines your instructor has given you.

Why is it important?

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Discovers relationships between research studies/ideas.
  • Identifies major themes, concepts, and researchers on a topic.
  • Identifies critical gaps and points of disagreement.
  • Discusses further research questions that logically come out of the previous studies.

APA7 Style resources

Cover Art

APA Style Blog - for those harder to find answers

1. Choose a topic. Define your research question.

Your literature review should be guided by your central research question.  The literature represents background and research developments related to a specific research question, interpreted and analyzed by you in a synthesized way.

  • Make sure your research question is not too broad or too narrow.  Is it manageable?
  • Begin writing down terms that are related to your question. These will be useful for searches later.
  • If you have the opportunity, discuss your topic with your professor and your class mates.

2. Decide on the scope of your review

How many studies do you need to look at? How comprehensive should it be? How many years should it cover? 

  • This may depend on your assignment.  How many sources does the assignment require?

3. Select the databases you will use to conduct your searches.

Make a list of the databases you will search. 

Where to find databases:

  • use the tabs on this guide
  • Find other databases in the Nursing Information Resources web page
  • More on the Medical Library web page
  • ... and more on the Yale University Library web page

4. Conduct your searches to find the evidence. Keep track of your searches.

  • Use the key words in your question, as well as synonyms for those words, as terms in your search. Use the database tutorials for help.
  • Save the searches in the databases. This saves time when you want to redo, or modify, the searches. It is also helpful to use as a guide is the searches are not finding any useful results.
  • Review the abstracts of research studies carefully. This will save you time.
  • Use the bibliographies and references of research studies you find to locate others.
  • Check with your professor, or a subject expert in the field, if you are missing any key works in the field.
  • Ask your librarian for help at any time.
  • Use a citation manager, such as EndNote as the repository for your citations. See the EndNote tutorials for help.

Review the literature

Some questions to help you analyze the research:

  • What was the research question of the study you are reviewing? What were the authors trying to discover?
  • Was the research funded by a source that could influence the findings?
  • What were the research methodologies? Analyze its literature review, the samples and variables used, the results, and the conclusions.
  • Does the research seem to be complete? Could it have been conducted more soundly? What further questions does it raise?
  • If there are conflicting studies, why do you think that is?
  • How are the authors viewed in the field? Has this study been cited? If so, how has it been analyzed?

Tips: 

  • Review the abstracts carefully.  
  • Keep careful notes so that you may track your thought processes during the research process.
  • Create a matrix of the studies for easy analysis, and synthesis, across all of the studies.
  • << Previous: Recommended Books
  • Last Updated: Jan 4, 2024 10:52 AM
  • URL: https://guides.library.yale.edu/YSNDoctoral
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 5. The Literature Review
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A literature review surveys prior research published in books, scholarly articles, and any other sources relevant to a particular issue, area of research, or theory, and by so doing, provides a description, summary, and critical evaluation of these works in relation to the research problem being investigated. Literature reviews are designed to provide an overview of sources you have used in researching a particular topic and to demonstrate to your readers how your research fits within existing scholarship about the topic.

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . Fourth edition. Thousand Oaks, CA: SAGE, 2014.

Importance of a Good Literature Review

A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories . A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem. The analytical features of a literature review might:

  • Give a new interpretation of old material or combine new with old interpretations,
  • Trace the intellectual progression of the field, including major debates,
  • Depending on the situation, evaluate the sources and advise the reader on the most pertinent or relevant research, or
  • Usually in the conclusion of a literature review, identify where gaps exist in how a problem has been researched to date.

Given this, the purpose of a literature review is to:

  • Place each work in the context of its contribution to understanding the research problem being studied.
  • Describe the relationship of each work to the others under consideration.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.
  • Resolve conflicts amongst seemingly contradictory previous studies.
  • Identify areas of prior scholarship to prevent duplication of effort.
  • Point the way in fulfilling a need for additional research.
  • Locate your own research within the context of existing literature [very important].

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper. 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . Los Angeles, CA: SAGE, 2011; Knopf, Jeffrey W. "Doing a Literature Review." PS: Political Science and Politics 39 (January 2006): 127-132; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012.

Types of Literature Reviews

It is important to think of knowledge in a given field as consisting of three layers. First, there are the primary studies that researchers conduct and publish. Second are the reviews of those studies that summarize and offer new interpretations built from and often extending beyond the primary studies. Third, there are the perceptions, conclusions, opinion, and interpretations that are shared informally among scholars that become part of the body of epistemological traditions within the field.

In composing a literature review, it is important to note that it is often this third layer of knowledge that is cited as "true" even though it often has only a loose relationship to the primary studies and secondary literature reviews. Given this, while literature reviews are designed to provide an overview and synthesis of pertinent sources you have explored, there are a number of approaches you could adopt depending upon the type of analysis underpinning your study.

Argumentative Review This form examines literature selectively in order to support or refute an argument, deeply embedded assumption, or philosophical problem already established in the literature. The purpose is to develop a body of literature that establishes a contrarian viewpoint. Given the value-laden nature of some social science research [e.g., educational reform; immigration control], argumentative approaches to analyzing the literature can be a legitimate and important form of discourse. However, note that they can also introduce problems of bias when they are used to make summary claims of the sort found in systematic reviews [see below].

Integrative Review Considered a form of research that reviews, critiques, and synthesizes representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated. The body of literature includes all studies that address related or identical hypotheses or research problems. A well-done integrative review meets the same standards as primary research in regard to clarity, rigor, and replication. This is the most common form of review in the social sciences.

Historical Review Few things rest in isolation from historical precedent. Historical literature reviews focus on examining research throughout a period of time, often starting with the first time an issue, concept, theory, phenomena emerged in the literature, then tracing its evolution within the scholarship of a discipline. The purpose is to place research in a historical context to show familiarity with state-of-the-art developments and to identify the likely directions for future research.

Methodological Review A review does not always focus on what someone said [findings], but how they came about saying what they say [method of analysis]. Reviewing methods of analysis provides a framework of understanding at different levels [i.e. those of theory, substantive fields, research approaches, and data collection and analysis techniques], how researchers draw upon a wide variety of knowledge ranging from the conceptual level to practical documents for use in fieldwork in the areas of ontological and epistemological consideration, quantitative and qualitative integration, sampling, interviewing, data collection, and data analysis. This approach helps highlight ethical issues which you should be aware of and consider as you go through your own study.

Systematic Review This form consists of an overview of existing evidence pertinent to a clearly formulated research question, which uses pre-specified and standardized methods to identify and critically appraise relevant research, and to collect, report, and analyze data from the studies that are included in the review. The goal is to deliberately document, critically evaluate, and summarize scientifically all of the research about a clearly defined research problem . Typically it focuses on a very specific empirical question, often posed in a cause-and-effect form, such as "To what extent does A contribute to B?" This type of literature review is primarily applied to examining prior research studies in clinical medicine and allied health fields, but it is increasingly being used in the social sciences.

Theoretical Review The purpose of this form is to examine the corpus of theory that has accumulated in regard to an issue, concept, theory, phenomena. The theoretical literature review helps to establish what theories already exist, the relationships between them, to what degree the existing theories have been investigated, and to develop new hypotheses to be tested. Often this form is used to help establish a lack of appropriate theories or reveal that current theories are inadequate for explaining new or emerging research problems. The unit of analysis can focus on a theoretical concept or a whole theory or framework.

NOTE : Most often the literature review will incorporate some combination of types. For example, a review that examines literature supporting or refuting an argument, assumption, or philosophical problem related to the research problem will also need to include writing supported by sources that establish the history of these arguments in the literature.

Baumeister, Roy F. and Mark R. Leary. "Writing Narrative Literature Reviews."  Review of General Psychology 1 (September 1997): 311-320; Mark R. Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Kennedy, Mary M. "Defining a Literature." Educational Researcher 36 (April 2007): 139-147; Petticrew, Mark and Helen Roberts. Systematic Reviews in the Social Sciences: A Practical Guide . Malden, MA: Blackwell Publishers, 2006; Torracro, Richard. "Writing Integrative Literature Reviews: Guidelines and Examples." Human Resource Development Review 4 (September 2005): 356-367; Rocco, Tonette S. and Maria S. Plakhotnik. "Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and Distinctions." Human Ressource Development Review 8 (March 2008): 120-130; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

Structure and Writing Style

I.  Thinking About Your Literature Review

The structure of a literature review should include the following in support of understanding the research problem :

  • An overview of the subject, issue, or theory under consideration, along with the objectives of the literature review,
  • Division of works under review into themes or categories [e.g. works that support a particular position, those against, and those offering alternative approaches entirely],
  • An explanation of how each work is similar to and how it varies from the others,
  • Conclusions as to which pieces are best considered in their argument, are most convincing of their opinions, and make the greatest contribution to the understanding and development of their area of research.

The critical evaluation of each work should consider :

  • Provenance -- what are the author's credentials? Are the author's arguments supported by evidence [e.g. primary historical material, case studies, narratives, statistics, recent scientific findings]?
  • Methodology -- were the techniques used to identify, gather, and analyze the data appropriate to addressing the research problem? Was the sample size appropriate? Were the results effectively interpreted and reported?
  • Objectivity -- is the author's perspective even-handed or prejudicial? Is contrary data considered or is certain pertinent information ignored to prove the author's point?
  • Persuasiveness -- which of the author's theses are most convincing or least convincing?
  • Validity -- are the author's arguments and conclusions convincing? Does the work ultimately contribute in any significant way to an understanding of the subject?

II.  Development of the Literature Review

Four Basic Stages of Writing 1.  Problem formulation -- which topic or field is being examined and what are its component issues? 2.  Literature search -- finding materials relevant to the subject being explored. 3.  Data evaluation -- determining which literature makes a significant contribution to the understanding of the topic. 4.  Analysis and interpretation -- discussing the findings and conclusions of pertinent literature.

Consider the following issues before writing the literature review: Clarify If your assignment is not specific about what form your literature review should take, seek clarification from your professor by asking these questions: 1.  Roughly how many sources would be appropriate to include? 2.  What types of sources should I review (books, journal articles, websites; scholarly versus popular sources)? 3.  Should I summarize, synthesize, or critique sources by discussing a common theme or issue? 4.  Should I evaluate the sources in any way beyond evaluating how they relate to understanding the research problem? 5.  Should I provide subheadings and other background information, such as definitions and/or a history? Find Models Use the exercise of reviewing the literature to examine how authors in your discipline or area of interest have composed their literature review sections. Read them to get a sense of the types of themes you might want to look for in your own research or to identify ways to organize your final review. The bibliography or reference section of sources you've already read, such as required readings in the course syllabus, are also excellent entry points into your own research. Narrow the Topic The narrower your topic, the easier it will be to limit the number of sources you need to read in order to obtain a good survey of relevant resources. Your professor will probably not expect you to read everything that's available about the topic, but you'll make the act of reviewing easier if you first limit scope of the research problem. A good strategy is to begin by searching the USC Libraries Catalog for recent books about the topic and review the table of contents for chapters that focuses on specific issues. You can also review the indexes of books to find references to specific issues that can serve as the focus of your research. For example, a book surveying the history of the Israeli-Palestinian conflict may include a chapter on the role Egypt has played in mediating the conflict, or look in the index for the pages where Egypt is mentioned in the text. Consider Whether Your Sources are Current Some disciplines require that you use information that is as current as possible. This is particularly true in disciplines in medicine and the sciences where research conducted becomes obsolete very quickly as new discoveries are made. However, when writing a review in the social sciences, a survey of the history of the literature may be required. In other words, a complete understanding the research problem requires you to deliberately examine how knowledge and perspectives have changed over time. Sort through other current bibliographies or literature reviews in the field to get a sense of what your discipline expects. You can also use this method to explore what is considered by scholars to be a "hot topic" and what is not.

III.  Ways to Organize Your Literature Review

Chronology of Events If your review follows the chronological method, you could write about the materials according to when they were published. This approach should only be followed if a clear path of research building on previous research can be identified and that these trends follow a clear chronological order of development. For example, a literature review that focuses on continuing research about the emergence of German economic power after the fall of the Soviet Union. By Publication Order your sources by publication chronology, then, only if the order demonstrates a more important trend. For instance, you could order a review of literature on environmental studies of brown fields if the progression revealed, for example, a change in the soil collection practices of the researchers who wrote and/or conducted the studies. Thematic [“conceptual categories”] A thematic literature review is the most common approach to summarizing prior research in the social and behavioral sciences. Thematic reviews are organized around a topic or issue, rather than the progression of time, although the progression of time may still be incorporated into a thematic review. For example, a review of the Internet’s impact on American presidential politics could focus on the development of online political satire. While the study focuses on one topic, the Internet’s impact on American presidential politics, it would still be organized chronologically reflecting technological developments in media. The difference in this example between a "chronological" and a "thematic" approach is what is emphasized the most: themes related to the role of the Internet in presidential politics. Note that more authentic thematic reviews tend to break away from chronological order. A review organized in this manner would shift between time periods within each section according to the point being made. Methodological A methodological approach focuses on the methods utilized by the researcher. For the Internet in American presidential politics project, one methodological approach would be to look at cultural differences between the portrayal of American presidents on American, British, and French websites. Or the review might focus on the fundraising impact of the Internet on a particular political party. A methodological scope will influence either the types of documents in the review or the way in which these documents are discussed.

Other Sections of Your Literature Review Once you've decided on the organizational method for your literature review, the sections you need to include in the paper should be easy to figure out because they arise from your organizational strategy. In other words, a chronological review would have subsections for each vital time period; a thematic review would have subtopics based upon factors that relate to the theme or issue. However, sometimes you may need to add additional sections that are necessary for your study, but do not fit in the organizational strategy of the body. What other sections you include in the body is up to you. However, only include what is necessary for the reader to locate your study within the larger scholarship about the research problem.

Here are examples of other sections, usually in the form of a single paragraph, you may need to include depending on the type of review you write:

  • Current Situation : Information necessary to understand the current topic or focus of the literature review.
  • Sources Used : Describes the methods and resources [e.g., databases] you used to identify the literature you reviewed.
  • History : The chronological progression of the field, the research literature, or an idea that is necessary to understand the literature review, if the body of the literature review is not already a chronology.
  • Selection Methods : Criteria you used to select (and perhaps exclude) sources in your literature review. For instance, you might explain that your review includes only peer-reviewed [i.e., scholarly] sources.
  • Standards : Description of the way in which you present your information.
  • Questions for Further Research : What questions about the field has the review sparked? How will you further your research as a result of the review?

IV.  Writing Your Literature Review

Once you've settled on how to organize your literature review, you're ready to write each section. When writing your review, keep in mind these issues.

Use Evidence A literature review section is, in this sense, just like any other academic research paper. Your interpretation of the available sources must be backed up with evidence [citations] that demonstrates that what you are saying is valid. Be Selective Select only the most important points in each source to highlight in the review. The type of information you choose to mention should relate directly to the research problem, whether it is thematic, methodological, or chronological. Related items that provide additional information, but that are not key to understanding the research problem, can be included in a list of further readings . Use Quotes Sparingly Some short quotes are appropriate if you want to emphasize a point, or if what an author stated cannot be easily paraphrased. Sometimes you may need to quote certain terminology that was coined by the author, is not common knowledge, or taken directly from the study. Do not use extensive quotes as a substitute for using your own words in reviewing the literature. Summarize and Synthesize Remember to summarize and synthesize your sources within each thematic paragraph as well as throughout the review. Recapitulate important features of a research study, but then synthesize it by rephrasing the study's significance and relating it to your own work and the work of others. Keep Your Own Voice While the literature review presents others' ideas, your voice [the writer's] should remain front and center. For example, weave references to other sources into what you are writing but maintain your own voice by starting and ending the paragraph with your own ideas and wording. Use Caution When Paraphrasing When paraphrasing a source that is not your own, be sure to represent the author's information or opinions accurately and in your own words. Even when paraphrasing an author’s work, you still must provide a citation to that work.

V.  Common Mistakes to Avoid

These are the most common mistakes made in reviewing social science research literature.

  • Sources in your literature review do not clearly relate to the research problem;
  • You do not take sufficient time to define and identify the most relevant sources to use in the literature review related to the research problem;
  • Relies exclusively on secondary analytical sources rather than including relevant primary research studies or data;
  • Uncritically accepts another researcher's findings and interpretations as valid, rather than examining critically all aspects of the research design and analysis;
  • Does not describe the search procedures that were used in identifying the literature to review;
  • Reports isolated statistical results rather than synthesizing them in chi-squared or meta-analytic methods; and,
  • Only includes research that validates assumptions and does not consider contrary findings and alternative interpretations found in the literature.

Cook, Kathleen E. and Elise Murowchick. “Do Literature Review Skills Transfer from One Course to Another?” Psychology Learning and Teaching 13 (March 2014): 3-11; Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . London: SAGE, 2011; Literature Review Handout. Online Writing Center. Liberty University; Literature Reviews. The Writing Center. University of North Carolina; Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: SAGE, 2016; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012; Randolph, Justus J. “A Guide to Writing the Dissertation Literature Review." Practical Assessment, Research, and Evaluation. vol. 14, June 2009; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016; Taylor, Dena. The Literature Review: A Few Tips On Conducting It. University College Writing Centre. University of Toronto; Writing a Literature Review. Academic Skills Centre. University of Canberra.

Writing Tip

Break Out of Your Disciplinary Box!

Thinking interdisciplinarily about a research problem can be a rewarding exercise in applying new ideas, theories, or concepts to an old problem. For example, what might cultural anthropologists say about the continuing conflict in the Middle East? In what ways might geographers view the need for better distribution of social service agencies in large cities than how social workers might study the issue? You don’t want to substitute a thorough review of core research literature in your discipline for studies conducted in other fields of study. However, particularly in the social sciences, thinking about research problems from multiple vectors is a key strategy for finding new solutions to a problem or gaining a new perspective. Consult with a librarian about identifying research databases in other disciplines; almost every field of study has at least one comprehensive database devoted to indexing its research literature.

Frodeman, Robert. The Oxford Handbook of Interdisciplinarity . New York: Oxford University Press, 2010.

Another Writing Tip

Don't Just Review for Content!

While conducting a review of the literature, maximize the time you devote to writing this part of your paper by thinking broadly about what you should be looking for and evaluating. Review not just what scholars are saying, but how are they saying it. Some questions to ask:

  • How are they organizing their ideas?
  • What methods have they used to study the problem?
  • What theories have been used to explain, predict, or understand their research problem?
  • What sources have they cited to support their conclusions?
  • How have they used non-textual elements [e.g., charts, graphs, figures, etc.] to illustrate key points?

When you begin to write your literature review section, you'll be glad you dug deeper into how the research was designed and constructed because it establishes a means for developing more substantial analysis and interpretation of the research problem.

Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1 998.

Yet Another Writing Tip

When Do I Know I Can Stop Looking and Move On?

Here are several strategies you can utilize to assess whether you've thoroughly reviewed the literature:

  • Look for repeating patterns in the research findings . If the same thing is being said, just by different people, then this likely demonstrates that the research problem has hit a conceptual dead end. At this point consider: Does your study extend current research?  Does it forge a new path? Or, does is merely add more of the same thing being said?
  • Look at sources the authors cite to in their work . If you begin to see the same researchers cited again and again, then this is often an indication that no new ideas have been generated to address the research problem.
  • Search Google Scholar to identify who has subsequently cited leading scholars already identified in your literature review [see next sub-tab]. This is called citation tracking and there are a number of sources that can help you identify who has cited whom, particularly scholars from outside of your discipline. Here again, if the same authors are being cited again and again, this may indicate no new literature has been written on the topic.

Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: Sage, 2016; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

  • << Previous: Theoretical Framework
  • Next: Citation Tracking >>
  • Last Updated: Mar 26, 2024 10:40 AM
  • URL: https://libguides.usc.edu/writingguide

Book cover

Learning, Design, and Technology pp 3925–3928 Cite as

Literature Reviews and Systematic Reviews of Research: The Roles and Importance

  • Hale Ilgaz 4 ,
  • Gloria Natividad 5 &
  • Arif Altun 6  
  • Reference work entry
  • First Online: 15 October 2023

23 Accesses

There are several studies in the literature from different subject topics, with different perspectives, variables, outputs, and findings. It is very important to get information from a scientific study during research processes. Therefore, the main aim of this chapter is putting together literature reviews and systematic review studies for presenting a holistic view to the field by using scientific methodology. We are very welcome to consider the studies written with this methodology without topic limitation in learning, design, and technology area.

  • Literature review
  • Systematic review

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Brocke, J. V., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the giant: On the importance of rigour in documenting the literature search process. ECIS . In: S. Newell, E. Whitley, N. Pouloudi, J. Wareham & L. Mathiassen (Eds.), Proceedings of the ECIS 2009, 17th European conference on information systems (pp. 2206–2217). Verona.

Google Scholar  

Kim, Y. S. (2017). The importance of literature review in research writing. Retrieved from: https://owlcation.com/humanities/literature_review

Research Guides. (2019). Systematic reviews: What is a systematic review? Retrieved from http://libguides.newcastle.edu.au/sysreviews

Uman, L. S. (2011). Systematic reviews and meta-analyses. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20 (1), 57–59.

Download references

Author information

Authors and affiliations.

Distance Education Center, Ankara University, Ankara, Turkey

Instituto Tecnológico de Saltillo, Saltillo, Mexico

Gloria Natividad

Hacettepe University, Ankara, Turkey

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hale Ilgaz .

Editor information

Editors and affiliations.

Department of Learning Technologies, University of North Texas, Denton, TX, USA

J. Michael Spector

Instructional Design and Technology, Virginia Tech School of Education, Blacksburg, VA, USA

Barbara B. Lockee

Marcus D. Childress

Section Editor information

Rights and permissions.

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Cite this entry.

Ilgaz, H., Natividad, G., Altun, A. (2023). Literature Reviews and Systematic Reviews of Research: The Roles and Importance. In: Spector, J.M., Lockee, B.B., Childress, M.D. (eds) Learning, Design, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17461-7_141

Download citation

DOI : https://doi.org/10.1007/978-3-319-17461-7_141

Published : 15 October 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-17460-0

Online ISBN : 978-3-319-17461-7

eBook Packages : Education Reference Module Humanities and Social Sciences Reference Module Education

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Elsevier QRcode Wechat

  • Research Process

Literature Review in Research Writing

  • 4 minute read
  • 421.2K views

Table of Contents

Research on research? If you find this idea rather peculiar, know that nowadays, with the huge amount of information produced daily all around the world, it is becoming more and more difficult to keep up to date with all of it. In addition to the sheer amount of research, there is also its origin. We are witnessing the economic and intellectual emergence of countries like China, Brazil, Turkey, and United Arab Emirates, for example, that are producing scholarly literature in their own languages. So, apart from the effort of gathering information, there must also be translators prepared to unify all of it in a single language to be the object of the literature survey. At Elsevier, our team of translators is ready to support researchers by delivering high-quality scientific translations , in several languages, to serve their research – no matter the topic.

What is a literature review?

A literature review is a study – or, more accurately, a survey – involving scholarly material, with the aim to discuss published information about a specific topic or research question. Therefore, to write a literature review, it is compulsory that you are a real expert in the object of study. The results and findings will be published and made available to the public, namely scientists working in the same area of research.

How to Write a Literature Review

First of all, don’t forget that writing a literature review is a great responsibility. It’s a document that is expected to be highly reliable, especially concerning its sources and findings. You have to feel intellectually comfortable in the area of study and highly proficient in the target language; misconceptions and errors do not have a place in a document as important as a literature review. In fact, you might want to consider text editing services, like those offered at Elsevier, to make sure your literature is following the highest standards of text quality. You want to make sure your literature review is memorable by its novelty and quality rather than language errors.

Writing a literature review requires expertise but also organization. We cannot teach you about your topic of research, but we can provide a few steps to guide you through conducting a literature review:

  • Choose your topic or research question: It should not be too comprehensive or too limited. You have to complete your task within a feasible time frame.
  • Set the scope: Define boundaries concerning the number of sources, time frame to be covered, geographical area, etc.
  • Decide which databases you will use for your searches: In order to search the best viable sources for your literature review, use highly regarded, comprehensive databases to get a big picture of the literature related to your topic.
  • Search, search, and search: Now you’ll start to investigate the research on your topic. It’s critical that you keep track of all the sources. Start by looking at research abstracts in detail to see if their respective studies relate to or are useful for your own work. Next, search for bibliographies and references that can help you broaden your list of resources. Choose the most relevant literature and remember to keep notes of their bibliographic references to be used later on.
  • Review all the literature, appraising carefully it’s content: After reading the study’s abstract, pay attention to the rest of the content of the articles you deem the “most relevant.” Identify methodologies, the most important questions they address, if they are well-designed and executed, and if they are cited enough, etc.

If it’s the first time you’ve published a literature review, note that it is important to follow a special structure. Just like in a thesis, for example, it is expected that you have an introduction – giving the general idea of the central topic and organizational pattern – a body – which contains the actual discussion of the sources – and finally the conclusion or recommendations – where you bring forward whatever you have drawn from the reviewed literature. The conclusion may even suggest there are no agreeable findings and that the discussion should be continued.

Why are literature reviews important?

Literature reviews constantly feed new research, that constantly feeds literature reviews…and we could go on and on. The fact is, one acts like a force over the other and this is what makes science, as a global discipline, constantly develop and evolve. As a scientist, writing a literature review can be very beneficial to your career, and set you apart from the expert elite in your field of interest. But it also can be an overwhelming task, so don’t hesitate in contacting Elsevier for text editing services, either for profound edition or just a last revision. We guarantee the very highest standards. You can also save time by letting us suggest and make the necessary amendments to your manuscript, so that it fits the structural pattern of a literature review. Who knows how many worldwide researchers you will impact with your next perfectly written literature review.

Know more: How to Find a Gap in Research .

Language Editing Services by Elsevier Author Services:

What is a research gap

What is a Research Gap

Know the diferent types of Scientific articles

  • Manuscript Preparation

Types of Scientific Articles

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

need and importance of review of literature in research

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Why Is Literature Review Important? (3 Benefits Explained)

Author Image

by  Antony W

January 21, 2023

why is literature review important explained

Every research project needs a literature review. And while it’s one of the most challenging parts of the assignment, in part because of the intensity of the research involved, it’s by far the most important section of a research paper.

Many students fail to write comprehensive literature reviews because they see the assignment as a formality.

For the most part, they’ll vaguely create a list of existing studies and consider the assignment complete. But such an approach overlooks why a literature review is important.

We need to take a step back and look beyond the definition of a literature review.

In particular, the goal of this guide is to help you explore the significance of the review of the existing literature.

Once you understand the role that literature reviews play in research projects, you’ll give the assignment the full attention that it deserves.

Key Takeaways

Writing a literature review is important for the following reasons:

  • It demonstrates that you understand the issue you’re investigating.
  • A literature review allows you to develop a more theoretical framework for your research. 
  • It justifies your research and shows the gaps present in the current literature.

Get Literature Review Writing Help

Do you find the workload involved in writing a literature review for your thesis, research paper, or standalone project overwhelming? We understand how involving the writing process can be, and we are here to help you with writing if you currently feel stuck.

You can hire a  professional literature review writer   from Help for Assessment to get the writing done for you. Whether you have a flexible deadline or the submission date for the literature is almost due, you can count on our team to help you get the paper done fast. 

What is a Literature Review?

A literature review is a study of the already existing research in a given area of study.

While it’s common in physical and social sciences, instructors may also request student to complete the assignment within the humanities space.

The review can be a standalone project or a part of an academic assignment.

If your professor or instructor asks you to write the review as a standalone project, your focus will be on exploring how a specific field of inquiry has developed over the course of time.

In the case where you have to include the review as part of your academic paper, the goal will be to set the background for the topic (or issue) you’re currently investigating.

How is Literature Review Different from an Essay?

In an education setting whether students are used to writing tons of essays every month, it’s likely for many to wonder whether an essay could be the same as a literature review.

While a literature review and an essay both require research before writing, there are a number of differences between them that you need to know.

Types of Literature Review

We’ll look at the significance of a literature review in a moment.

For now let’s look at the types of literature reviews that your instructor may ask you to write.

As of this writing, there are 6 types of reviews that you need to know about. These are:

1. Argumentative Review

Examines a literature review with the intention to support or refuse an argument, with the aim being to develop a body of literature that can establish a contrarian point of view.

2. Integrative Literature Review

This type of review critiques and synthesizes related literature to generate a new framework and perspective on a topic.

Researchers have to address identical and/or related hypotheses or research problems to comply with research standards with regards to replication, vigor, and clarity.

3. Historical Literature

The focus of the review is to examine research within a given period, and usually starts from the time a research problem or issue emerged.

Then, you have to trace its evolution throughout the suggested timeframe within the scholarship of that particular discipline.

4. Methodological Literature Review

The focus shifts from what someone said to how they ended up saying what they said.

Since the focus here is on the method of analysis, methodological reviews gives a better framework that help one to understand exactly how a researcher draws their conclusion from a wide range of knowledge.

5. Systematic Literature

A systematic review focuses on the existing evidence related to a specific research question.

You will need to use a pre-specified and standardized approach to identify, evaluate, and appraise research, not to mention collect, analyze, and report data collected from the review.

Understand that the goal of a systematic review is to evaluate, summarize, and document research that focuses on a specific (or clearly defined) research problem.

6. Theoretical Literature Review

Theoretical review focuses on examining theories that resulted from an issue, a concept, or a situation.

It’s through this type of review that a researcher can easily establish the kind of theories that already formulated, the degree to what researchers have investigated them, and the relationship between them.

It’s through theoretical review that one can develop new hypotheses for testing and can therefore help to determine what theories aren’t sufficient to explain emerging research problems.

Why Is Literature Review Important?

Now that you know the difference between an essay and a review as well as the different types of literature review, it’s important to look at why it’s important to examine existing literature in your research.

There are a number of reasons why instructors ask you to write a review , and they’re as follow:

1. Demonstrate a Clear Understanding of the Subject

Writing a literature review demonstrates that you have a clear understanding of the subject you’re investigating.

It also means that you can easily identify, evaluate, and summarize existing research that’s relevant to your work. 

2. Justify Your Research

There’s more to writing a research paper than just identifying topic and generating your research question from it.

You also have to go as far as to justify your research, and the only way to do that is by including a literature review in your work.

It’s important to understand that looking at past research is the only way to identify gaps that exist in the current literature.

That can go a long way to help fill in the gap by addressing them in your own research work.

3. Helps to Set a Resourceful Theoretical Framework

Because a research paper assignment builds up on the ideas of already existing research, doing a literature review can help you to set a resourceful theoretical framework on which to base your study.

The theoretical framework will include concepts and theories that you will base your research on. And keep in mind that it’s this framework that professors will use to judge the overall quality of your work. 

Frequently Asked Questions

1. what are the benefits of literature review in research.

A literature review in research allows you to discover exiting knowledge in your field and the boundaries and limitations that exists within that field.

Moreover, doing a review of existing literature helps you to understand the theories that drive an area of investigation, making it easy for you to place your research question  into proper context. 

2. What is the Effect of a Good Literature Review?

In addition to providing context, reducing research redundancy, and informing methodology, a well-written literature review can maximize relevance, enhance originality, and ensure professional standards in writing.

3. What is a Strength of a Literature Review?

The strength of a literature review is the ability to improve your information seeking skills and enhancing your knowledge about the topic under investigation.

As you can see, a review is quite a significant part of a research project, so you should treat it with the seriousness that it deserves.

At the end of the day, you want to create a good connection between you and your readers, and the best way to do that is to pack just as much value as you can in your literature review project.

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 21 March 2024

Expert review of the science underlying nature-based climate solutions

  • B. Buma   ORCID: orcid.org/0000-0003-2402-7737 1 , 2   na1 ,
  • D. R. Gordon   ORCID: orcid.org/0000-0001-6398-2345 1 , 3   na1 ,
  • K. M. Kleisner 1 ,
  • A. Bartuska 1 , 4 ,
  • A. Bidlack 5 ,
  • R. DeFries   ORCID: orcid.org/0000-0002-3332-4621 6 ,
  • P. Ellis   ORCID: orcid.org/0000-0001-7933-8298 7 ,
  • P. Friedlingstein   ORCID: orcid.org/0000-0003-3309-4739 8 , 9 ,
  • S. Metzger 10   nAff15   nAff16 ,
  • G. Morgan 11 ,
  • K. Novick   ORCID: orcid.org/0000-0002-8431-0879 12 ,
  • J. N. Sanchirico 13 ,
  • J. R. Collins   ORCID: orcid.org/0000-0002-5705-9682 1 , 14 ,
  • A. J. Eagle   ORCID: orcid.org/0000-0003-0841-2379 1 ,
  • R. Fujita 1 ,
  • E. Holst 1 ,
  • J. M. Lavallee   ORCID: orcid.org/0000-0002-3028-7087 1 ,
  • R. N. Lubowski 1   nAff17 ,
  • C. Melikov 1   nAff18 ,
  • L. A. Moore   ORCID: orcid.org/0000-0003-0239-6080 1   nAff19 ,
  • E. E. Oldfield   ORCID: orcid.org/0000-0002-6181-1267 1 ,
  • J. Paltseva 1   nAff20 ,
  • A. M. Raffeld   ORCID: orcid.org/0000-0002-5036-6460 1 ,
  • N. A. Randazzo 1   nAff21   nAff22 ,
  • C. Schneider 1 ,
  • N. Uludere Aragon 1   nAff23 &
  • S. P. Hamburg 1  

Nature Climate Change ( 2024 ) Cite this article

10k Accesses

43 Altmetric

Metrics details

  • Climate-change ecology
  • Climate-change mitigation
  • Environmental impact

Viable nature-based climate solutions (NbCS) are needed to achieve climate goals expressed in international agreements like the Paris Accord. Many NbCS pathways have strong scientific foundations and can deliver meaningful climate benefits but effective mitigation is undermined by pathways with less scientific certainty. Here we couple an extensive literature review with an expert elicitation on 43 pathways and find that at present the most used pathways, such as tropical forest conservation, have a solid scientific basis for mitigation. However, the experts suggested that some pathways, many with carbon credit eligibility and market activity, remain uncertain in terms of their climate mitigation efficacy. Sources of uncertainty include incomplete GHG measurement and accounting. We recommend focusing on resolving those uncertainties before broadly scaling implementation of those pathways in quantitative emission or sequestration mitigation plans. If appropriate, those pathways should be supported for their cobenefits, such as biodiversity and food security.

Similar content being viewed by others

need and importance of review of literature in research

Australian human-induced native forest regeneration carbon offset projects have limited impact on changes in woody vegetation cover and carbon removals

Andrew Macintosh, Don Butler, … Paul Summerfield

need and importance of review of literature in research

Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions

Tiehu He, Weixin Ding, … Quanfa Zhang

need and importance of review of literature in research

Historical impacts of grazing on carbon stocks and climate mitigation opportunities

Shuai Ren, César Terrer, … Dan Liu

Nature-based climate solutions (NbCS) are conservation, restoration and improved management strategies (pathways) in natural and working ecosystems with the primary motivation to mitigate GHG emissions and remove CO 2 from the atmosphere 1 (similar to ecosystem-based mitigation 2 ). GHG mitigation through ecosystem stewardship is integral to meeting global climate goals, with the greatest benefit coming from near-term maximization of emission reductions, followed by CO 2 removal 3 . Many countries (for example, Indonesia, China and Colombia) use NbCS to demonstrate progress toward national climate commitments.

The scope of NbCS is narrower than that of nature-based solutions (NbS) which include interventions that prioritize non-climate benefits alongside climate (for example, biodiversity, food provisioning and water quality improvement) 4 . In many cases, GHG mitigation is considered a cobenefit that results from NbS actions focused on these other challenges 2 . In contrast, NbCS are broader than natural climate solutions, which are primarily focused on climate mitigation through conservation, restoration and improved land management, generally not moving ecosystems beyond their unmodified structure, function or composition 5 . NbCS may involve moving systems beyond their original function, for example by cultivating macroalgae in water deeper than their natural habitat.

The promise of NbCS has generated a proliferation of interest in using them in GHG mitigation plans 6 , 7 ; 104 of the 168 signatories to the Paris Accord included nature-based actions as part of their mitigation plans 8 . Success in long-term GHG management requires an accurate accounting of inputs and outputs to the atmosphere at scale, so NbCS credits must have robust, comprehensive and transparent scientific underpinnings 9 . Given the urgency of the climate problem, our goal is to identify NbCS pathways with a sufficient scientific foundation to provide broad confidence in their potential GHG mitigation impact, provide resources for confident implementation and identify priority research areas in more uncertain pathways. Evaluating implementation of mitigation projects is beyond our scope; this effort focuses on understanding the underlying science. The purpose is not evaluating any specific carbon crediting protocol or implementation framework but rather the current state of scientific understanding necessary to provide confidence in any NbCS.

In service of this goal, we first investigated nine biomes (boreal forests, coastal marine (salt marsh, mangrove, seagrass and coral reef), freshwater wetlands, grasslands, open ocean (large marine animal and mesopelagic zone biomass, seabed), peatlands, shrublands, temperate forests and tropical forests) and three cultivation types (agroforestry, croplands and macroalgae aquaculture); these were chosen because of their identified potential scale of global impact. In this context, impact is assessed as net GHG mitigation: the CO 2 sequestered or emissions reduced, for example, discounted by understood simultaneous emissions of other GHG (as when N 2 O is released simultaneously with carbon sequestration in cropland soils). From there, we identified 43 NbCS pathways which have been formally implemented (with or without market action) or informally proposed. We estimated the scale of mitigation impact for each pathway on the basis of this literature and, as a proxy measure of NbCS implementation, determined eligibility and activity under existing carbon crediting protocols. Eligibility means that the pathway is addressed by an existing GHG mitigation protocol; market activity means that credits are actively being bought under those eligibility requirements. We considered pathways across a spectrum from protection to improved management to restoration to manipulated systems, but some boundaries were necessary. We excluded primarily abiotically driven pathways (for example, ocean alkalinity enhancement) or where major land use or land-use trade-offs exist (for example, afforestation) 10 , 11 , 12 . Of the 43 pathways, 79% are at present eligible for carbon crediting (sometimes under several methodologies) and at least 65% of those have been implemented (Supplementary Table 1 ). This review was then appraised by 30 independent scholars (at least three per pathway; a complete review synthesis is given in the Supplementary Data ).

Consolidation of a broad body of scientific knowledge, with inherent variance, requires expert judgement. We used an expert elicitation process 13 , 14 , 15 with ten experts to place each proposed NbCS pathway into one of three readiness categories following their own assessment of the scientific literature, categorized by general sources of potential uncertainty: category 1, sufficient scientific basis to support a high-quality carbon accounting system or to support the development of such a system today; category 2, a >25% chance that focused research and reasonable funding would support development of high-quality carbon accounting (that is, move to category 1) within 5 years; or category 3, a <25% chance of development of high-quality carbon accounting within 5 years (for example, due to measurement challenges, unconstrained leakage, external factors which constrain viability).

If an expert ranked a pathway as category 2, they were also asked to rank general research needs to resolve: leakage/displacement (spillover to other areas), measuring, reporting and verification (the ability to quantify all salient stocks and fluxes), basic mechanisms of action (fundamental science), durability (ability to predict or compensate for uncertainty in timescale of effectiveness due to disturbances, climate change, human activity or other factors), geographic uncertainty (place-to-place variation), scaling potential (ability to estimate impact) and setting of a baseline (ability to estimate additionality over non-action; a counterfactual). To avoid biasing towards a particular a priori framework for evaluation of the scientific literature, reviewers could use their own framework for evaluating the NbCS literature about potential climate impact and so could choose to ignore or add relevant categorizations as well. Any pathway in category 1 would not need fundamental research for implementation; research gaps were considered too extensive for useful guidance on reducing uncertainty in category 3 pathways. Estimates of the global scale of likely potential impact (PgCO 2 e yr −1 ) and cobenefits were also collected from expert elicitors. See Methods and Supplementary Information for the survey instrument.

Four pathways with the highest current carbon market activity and high mitigation potential (tropical and temperate forest conservation and reforestation; Table 1 and Supplementary Data ), were consistently rated as high-confidence pathways in the expert elicitation survey. Other NbCS pathways, especially in the forestry sector, were rated relatively strongly by the experts for both confidence in scientific basis and scale of potential impact, with some spread across the experts (upper right quadrant, Fig. 1 ). Conversely, 13 pathways were consistently marked by experts as currently highly uncertain/low confidence (median score across experts: 2.5–3.0) and placed in category 3 (for example, cropland microbial amendments and coral reef restoration; Supplementary Tables 1 and 2 ). For the full review, including crediting protocols currently used, literature estimates of scale and details of sub-pathways, see Supplementary Data .

figure 1

Pathways in the upper right quadrant have both high confidence in the scientific foundations and the largest potential scale of global impact; pathways in the lower left have the lowest confidence in our present scientific body of knowledge and an estimated smaller potential scale of impact. Designations of carbon credit eligibility under existing protocols and market activity at the present time are noted. Grassland enhanced mineral weathering (EMW) is not shown (mean category rating 2.9) as no scale of impact was estimated. See Supplementary Table 1 for specific pathway data. Bars represent 20th to 80th percentiles of individual estimates, if there was variability in estimates. A small amount of random noise was added to avoid overlap.

The experts assessed 26 pathways as having average confidence scores between 1.5 and 2.4, suggesting the potential for near-term resolution of uncertainties. This categorization arose from either consensus amongst experts on the uncertain potential (for example, boreal forest reforestation consistently rated category 2, with primary concerns about durability) or because experts disagreed, with some ranking category 1 and others category 3 (for example, pasture management). We note that where expert disagreement exists (seen as the spread of responses in Fig. 1 and Supplementary Table 1 ; also see Data availability for link to original data), this suggests caution against overconfidence in statements about these pathways. These results also suggest that confidence may be increased by targeted research on the identified sources of uncertainty (Supplementary Table 3 ).

Sources of uncertainty

Durability and baseline-setting were rated as high sources of uncertainty across all pathways ranked as category 2 by the experts (mean ratings of 3.6 and 3.4 out of 5, respectively; Supplementary Table 3 ). Understanding of mechanisms and geographic spread had the lowest uncertainty ratings (2.1 and 2.3, respectively), showing confidence in the basic science. Different subsets of pathways had different prioritizations, however, suggesting different research needs: forest-centric pathways were most uncertain in their durability and additionality (3.8 and 3.4, respectively), suggesting concerns about long-term climate and disturbance trajectories. Agricultural and grassland systems, however, had higher uncertainty in measurement methods and additionality (3.9 and 3.5 respectively). Although there were concerns about durability from some experts (for example, due to sea-level rise), some coastal blue carbon pathways such as mangrove restoration (mean category ranking: 1.7 (20th to 80th percentile 1.0–2.0)) have higher confidence than others (for example, seagrass restoration: mean category ranking 2.8, 20th to 80th percentile 2.6–3.0)), which are relatively poorly constrained in terms of net radiative forcing potential despite a potentially large carbon impact (seagrass median: 1.60 PgCO 2 e yr −1 ; see Supplementary Data for more scientific literature estimates).

Scale of impact

For those pathways with lower categorization by the expert elicitation (category 2 or 3) at the present time, scale of global impact is a potential heuristic for prioritizing further research. High variability, often two orders of magnitude, was evident in the mean estimated potential PgCO 2 e yr −1 impacts for the different pathways (Fig. 1 and Supplementary Table 2 ) and the review of the literature found even larger ranges produced by individual studies (Supplementary Data ). A probable cause of this wide range was different constraints on the estimated potential, with some studies focusing on potential maximum impact and others on more constrained realizable impacts. Only avoided loss of tropical forest and cropland biochar amendment were consistently estimated as having the likely potential to mitigate >2 PgCO 2 e yr −1 , although biochar was considered more uncertain by experts due to other factors germane to its overall viability as a climate solution, averaging a categorization of 2.2. The next four highest potential impact pathways, ranging from 1.6 to 1.7 PgCO 2 e yr −1 , spanned the spectrum from high readiness (temperate forest restoration) to moderate (cropland conversion from annual to perennial vegetation and grassland restoration) to low (seagrass restoration, with main uncertainties around scale of potential impact and durability).

There was high variability in the elicitors’ estimated potential scale of impact, even in pathways with strong support, such as tropical forest avoided loss (20th to 80th percentile confidence interval: 1–8 PgCO 2 e yr −1 ), again emphasizing the importance of consistent definitions and constraints on how NbCS are measured, evaluated and then used in broad-scale climate change mitigation planning and budgeting. Generally, as pathway readiness decreased (moving from category 1 to 3), the elicitor-estimated estimates of GHG mitigation potential decreased (Supplementary Fig. 1 ). Note that individual studies from the scientific literature may have higher or lower estimates (Supplementary Data ).

Expert elicitation meta-analyses suggest that 6–12 responses are sufficient for a robust and stable quantification of responses 15 . We tested that assumption via a Monte Carlo-based sensitivity assessment. Readiness categorizations by the ten experts were robust to a Monte Carlo simulation test, where further samples were randomly drawn from the observed distribution of responses: mean difference between the original and the boot-strapped data was 0.02 (s.d. = 0.05) with an absolute difference average of 0.06 (s.d. = 0.06). The maximum difference in readiness categorization means across all pathways was 0.20 (s.d. = 0.20) (Supplementary Table 2 ). The full dataset of responses is available online (see ʻData availabilityʼ).

These results highlight opportunities to accelerate implementation of NbCS in well-supported pathways and identify critical research needs in others (Fig. 1 ). We suggest focusing future efforts on resolving identified uncertainties for pathways at the intersection between moderate average readiness (for example, mean categorizations between ~1.5 and 2.0) and high potential impact (for example, median >0.5 PgCO 2 e yr −1 ; Supplementary Table 1 ): agroforestry, improved tropical and temperate forest management, tropical and boreal peatlands avoided loss and peatland restoration. Many, although not all, experts identified durability and baseline/additionality as key concerns to resolve in those systems; research explicitly targeted at those specific uncertainties (Supplementary Table 3 ) could rapidly improve confidence in those pathways.

We recommend a secondary research focus on the lower ranked (mean category 2.0 to 3.0) pathways with estimated potential impacts >1 PgCO 2 e yr −1 (Supplementary Fig. 2 ). For these pathways, explicit, quantitative incorporation into broad-scale GHG management plans will require further focus on systems-level carbon/GHG understandings to inspire confidence at all stages of action and/or identifying locations likely to support durable GHG mitigation, for example ref. 16 . Examples of this group include avoided loss and degradation of boreal forests (for example, fire, pests and pathogens and albedo 16 ) and effective mesopelagic fishery management, which some individual studies estimate would avoid future reductions of the currently sequestered 1.5–2.0 PgC yr −1 (refs. 17 , 18 ). These pathways may turn out to have higher or lower potential than the expert review suggests, on the basis of individual studies (Supplementary Data ) but strong support will require further, independent verification of that potential.

We note that category 3 rankings by expert elicitation do not necessarily imply non-viability but simply that much more research is needed to confidently incorporate actions into quantitative GHG mitigation plans. We found an unsurprising trend of lower readiness categorization with lower pathway familiarity (Supplementary Fig. 3 ). This correlation may result from two, non-exclusive potential causes: (1) lower elicitor expertise in some pathways (inevitable, although the panel was explicitly chosen for global perspectives, connections and diverse specialties) and (2) an actual lack of scientific evidence in the literature, which leads to that self-reported lack of familiarity, a common finding in the literature review (Supplementary Data ). Both explanations suggest a need to better consolidate, develop and disseminate the science in each pathway for global utility and recognition.

Our focus on GHG-related benefits in no way diminishes the substantial conservation, environmental and social cobenefits of these pathways (Supplementary Table 4 ), which often exceed their perceived climate benefits 1 , 19 , 20 , 21 . Where experts found climate impacts to remain highly uncertain but other NbS benefits are clear (for example, biodiversity and water quality; Supplementary Table 4 ), other incentives or financing mechanisms independent of carbon crediting should be pursued. While the goals here directly relate to using NbCS as a reliably quantifiable part of global climate action planning and thus strong GHG-related scientific foundations, non-climate NbS projects may provide climate benefits that are less well constrained (and thus less useful from a GHG budgeting standpoint) but also valuable. Potential trade-offs, if any, between ecosystem services and management actions, such as biodiversity and positive GHG outcomes, should be explored to ensure the best realization of desired goals 2 .

Finally, our focus in this study was on broad-scale NbCS potential in quantitative mitigation planning because of the principal and necessary role of NbCS in overall global warming targets. We recognize the range of project conditions that may increase, or decrease, the rigour of any pathway outside the global-scale focus here. We did not specifically evaluate the large and increasing number of crediting concepts (by pathway: Supplementary Data ), focusing rather on the underlying scientific body of knowledge within those pathways. Some broad pathways may have better defined sub-pathways within them, with a smaller potential scale of impact but potentially lower uncertainty (for example, macroalgae harvest cycling). Poorly enacted NbCS actions and/or crediting methodologies at project scales may result in loss of benefits even from high-ranking pathways 22 , 23 , 24 and attention to implementation should be paramount. Conversely, strong, careful project-scale methodologies may make lower readiness pathways beneficial for a given site.

Viable NbCS are vital to global climate change mitigation but NbCS pathways that lack strong scientific underpinnings threaten global accounting by potentially overestimating future climate benefits and eroding public trust in rigorous natural solutions. Both the review of the scientific literature and the expert elicitation survey identified high potential ready-to-implement pathways (for example, tropical reforestation), reinforcing present use of NbCS in planning.

However, uncertainty remains about the quantifiable GHG mitigation of some active and nascent NbCS pathways. On the basis of the expert elicitation survey and review of the scientific literature, we are concerned that large-scale implementation of less scientifically well-founded NbCS pathways in mitigation plans may undermine net GHG budget planning; those pathways require more study before they can be confidently promoted at broad scales and life-cycle analyses to integrate system-level emissions when calculating totals. The expert elicitation judgements suggest a precautionary approach to scaling lower confidence pathways until the scientific foundations are strengthened, especially for NbCS pathways with insufficient measurement and monitoring 10 , 24 , 25 or poorly understood or measured net GHG mitigation potentials 16 , 26 , 27 , 28 . While the need to implement more NbCS pathways for reducing GHG emissions and removing carbon from the atmosphere is urgent, advancing the implementation of poorly quantified pathways (in relation to their GHG mitigation efficacy) could give the false impression that they can balance ongoing, fossil emissions, thereby undermining overall support for more viable NbCS pathways. Explicitly targeting research to resolve these uncertainties in the baseline science could greatly bolster confidence in the less-established NbCS pathways, benefiting efforts to reduce GHG concentrations 29 .

The results of this study should inform both market-based mechanisms and non-market approaches to NbCS pathway management. Research and action that elucidates and advances pathways to ensure a solid scientific basis will provide confidence in the foundation for successfully implementing NbCS as a core component of global GHG management.

NbCS pathway selection

We synthesized scientific publications for nine biomes (boreal forests, coastal blue carbon, freshwater wetlands, grasslands, open ocean blue carbon, peatlands, shrublands, temperate forests and tropical forests) and three cultivation types (agroforestry, croplands and macroalgae aquaculture) (hereafter, systems) and the different pathways through which they may be able to remove carbon or reduce GHG emissions. Shrublands and grasslands were considered as independent ecosystems; nonetheless, we acknowledge that there is overlap in the numbers presented here because shrublands are often included with grasslands 5 , 30 , 31 , 32 , 33 .

The 12 systems were chosen because they have each been identified as having potential for emissions reductions or carbon removal at globally relevant scales. Within these systems, we identified 43 pathways which either have carbon credit protocols formally established or informally proposed for review (non-carbon associated credits were not evaluated). We obtained data on carbon crediting protocols from international, national and regional organizations and registries, such as Verra, American Carbon Registry, Climate Action Reserve, Gold Standard, Clean Development Mechanism, FAO and Nori. We also obtained data from the Voluntary Registry Offsets Database developed by the Berkeley Carbon Trading Project and Carbon Direct company 34 . While we found evidence of more Chinese carbon crediting protocols, we were not able to review these because of limited publicly available information. To maintain clarity and avoid misrepresentation, we used the language as written in each protocol. A full list of the organizations and registries for each system can be found in the Supplementary Data .

Literature searches and synthesis

We reviewed scientific literature and reviews (for example, IPCC special reports) to identify studies reporting data on carbon stocks, GHG dynamics and sequestration potential of each system. Peer-reviewed studies and meta-analyses were identified on Scopus, Web of Science and Google Scholar using simple queries combining the specific practice or pathway names or synonyms (for example, no-tillage, soil amendments, reduced stocking rates, improved forest management, avoided forest conversion and degradation, avoided mangrove conversion and degradation) and the following search terms: ‘carbon storage’, ‘carbon stocks’, ‘carbon sequestration’, ‘carbon sequestration potential’, ‘additional carbon storage’, ‘carbon dynamics’, ‘areal extent’ or ‘global’.

The full literature review was conducted between January and October 2021. We solicited an independent, external review of the syntheses (obtaining from at least three external reviewers per natural or working system; see p. 2 of the Supplementary Data ) as a second check against missing key papers or misinterpretation of data. The review was generally completed in March 2022. Data from additional relevant citations were added through October 2022 as they were discovered. For a complete list of all literature cited, see pp. 217–249 of the Supplementary Data .

From candidate papers, the papers were considered if their results/data could be applied to the following central questions:

How much carbon is stored (globally) at present in the system (total and on average per hectare) and what is the confidence?

At the global level, is the system a carbon source or sink at this time? What is the business-as-usual projection for its carbon dynamics?

Is it possible, through active management, to either increase net carbon sequestration in the system or prevent carbon emissions from that system? (Note that other GHG emissions and forcings were included here as well.)

What is the range of estimates for how much extra carbon could be sequestered globally?

How much confidence do we have in the present methods to detect any net increases in carbon sequestration in a system or net changes in areal extent of that?

From each paper, quantitative estimates for the above questions were extracted for each pathway, including any descriptive information/metadata necessary to understand the estimate. In addition, information on sample size, sampling scheme, geographic coverage, timeline of study, timeline of projections (if applicable) and specific study contexts (for example, wind-break agroforestry) were recorded.

We also tracked where the literature identified trade-offs between carbon sequestered or CO 2 emissions reduced and emissions of other GHG (for example, N 2 O or methane) for questions three and five above. For example, wetland restoration can result in increased CO 2 uptake from the atmosphere. However, it can also increase methane and N 2 O emissions to the atmosphere. Experts were asked to consider the uncertainty in assessing net GHG mitigation as they categorized the NbCS pathways.

Inclusion of each pathway in mitigation protocols and the specific carbon registries involved were also identified. These results are reported (grouped or individually as appropriate) in the Supplementary Data , organized by the central questions and including textual information for interpretation. The data and protocol summaries for each of the 12 systems were reviewed by at least three scientists each and accordingly revised.

These summaries were provided to the expert elicitation group as optional background information.

Unit conversions

Since this synthesis draws on literature from several sources that use different methods and units, all carbon measurements were standardized to the International System of Units (SI units). When referring to total stocks for each system, numbers are reported in SI units of elemental carbon (that is, PgC). When referring to mitigation potential, elemental carbon was converted to CO 2 by multiplying by 3.67. Differences in methodology, such as soil sampling depth, make it difficult to standardize across studies. Where applicable, the specific measurement used to develop each stock estimate is reported.

Expert elicitation process

To assess conclusions brought about by the initial review process described above, we conducted an expert elicitation survey to consolidate and add further, independent assessments to the original literature review. The expert elicitation survey design followed best practice recommendations 14 , with a focus on participant selection, explicitly defining uncertainty, minimizing cognitive and overconfidence biases and clarity of focus. Research on expert elicitation suggests that 6–12 responses are sufficient for a stable quantification of responses 15 . We identified >40 potential experts via a broad survey of leading academics, science-oriented NGO and government agency publications and products. These individuals have published on several NbCS pathways or could represent larger research efforts that spanned the NbCS under consideration. Careful attention was paid to the gender and sectoral breakdown of respondents to ensure equitable representation. Of the invitees, ten completed the full elicitation effort. Experts were offered compensation for their time.

Implementation of the expert elicitation process followed the IDEA protocol 15 . Briefly, after a short introductory interview, the survey was sent to the participants. Results were anonymized and standardized (methods below) and a meeting held with the entire group to discuss the initial results and calibrate understanding of questions. The purpose of this meeting was not to develop consensus on a singular answer but to discuss and ensure that all questions are being considered in the same way (for example, clarifying any potentially confusing language, discussing any questions that emerged as part of the process). The experts then revisited their initial rankings to provide final, anonymous rankings which were compiled in the same way. These final rankings are the results presented here and may be the same or different from the initial rankings, which were discarded.

Survey questions

The expert elicitation survey comprised five questions for each pathway. The data were collected via Google Forms and collated anonymously at the level of pathways, with each respondent contributing one datapoint for each pathway. The experts reported their familiarity (or the familiarity of the organization whose work they were representing) with the pathway and other cobenefits for the pathways.

The initial question ranked the NbCS pathway by category, from one to three.

Category 1 was defined as a pathway with sufficient scientific knowledge to support a high-quality carbon accounting system today (for example, meets the scientific criteria identified in the WWF-EDF-Oeko Institut and ICAO TAB) or to support the development of such a system today. The intended interpretation is that sufficient science is available for quantifying and verifying net GHG mitigation. Note that experts were not required to reference any given ‘high-quality’ crediting framework, which were provided only as examples. In other words, the evaluation was not intended to rank a given framework (for example, ref. 35 ) but rather expert confidence in the fundamental scientific understandings that underpin potential for carbon accounting overall. To this end, no categorization of uncertainty was required (reviewers could skip categorizations they felt were not necessary) and space was available to fill in new categories by individual reviewers (if they felt a category was missing or needed). Uncertainties at this category 1 level are deemed ‘acceptable’, for example, not precluding accounting now, although more research may further substantiate high-quality credits.

Category 2 pathways have a good chance (>25%) that with more research and within the next 5 years, the pathway could be developed into a high-quality pathway for carbon accounting and as a nature-based climate solution pathway. For these pathways, further understanding is needed for factors such as baseline processes, long-term stability, unconstrained fluxes, possible leakage or other before labelling as category 1 but the expert is confident that information can be developed, in 5 years or less, with more work. The >25% chance threshold and 5-year timeframe were determined a priori to reflect and identify pathways that experts identified as having the potential to meet the Paris Accord 2030 goal. Other thresholds (for example, longer timeframes) could have been chosen, which would impact the relative distribution of pathways in categories 2 and 3 (for example, a longer timeframe allowed could move some pathways from category 3 into category 2, for some reviewers). We emphasize that category 3 pathways do not necessarily mean non-valuable approaches but longer timeframes required for research than the one set here.

Category 3 responses denoted pathways that the expert thought had little chance (<25%) that with more research and within the next 5 years, this pathway could be developed into a suitable pathway for managing as a natural solutions pathway, either because present evidence already suggests GHG reduction is not likely to be viable, co-emissions or other biophysical feedbacks may offset those gains or because understanding of key factors is lacking and unlikely to be developed within the next 5 years. Notably, the last does not mean that the NbCS pathway is not valid or viable in the long-term, simply that physical and biological understandings are probably not established enough to enable scientific rigorous and valid NbCS activity in the near term.

The second question asked the experts to identify research gaps associated with those that they ranked as category 2 pathways to determine focal areas for further research. The experts were asked to rank concerns about durability (ability to predict or compensate for uncertainty in timescale of effectiveness due to disturbances, climate change, human activity or other factors), geographic uncertainty (place-to-place variation), leakage or displacement (spillover of activities to other areas), measuring, reporting and verification (MRV, referring to the ability to quantify all salient stocks and fluxes to fully assess climate impacts), basic mechanisms of action (fundamental science), scaling potential (ability to estimate potential growth) and setting of a baseline (ability to reasonably quantify additionality over non-action, a counterfactual). Respondents could also enter a different category if desired. For complete definitions of these categories, see the survey instrument ( Supplementary Information ). This question was not asked if the expert ranked the pathway as category 1, as those were deemed acceptable, or for category 3, respecting the substantial uncertainty in that rating. Note that responses were individual and so the same NbCS pathway could receive (for example) several individual category 1 rankings, which would indicate reasonable confidence from those experts, and several category 2 rankings from others, which would indicate that those reviewers have lingering concerns about the scientific basis, along with their rankings of the remaining key uncertainties in those pathways. These are important considerations, as they reflect the diversity of opinions and research priorities; individual responses are publicly available (anonymized: https://doi.org/10.5281/zenodo.7859146 ).

The third question involved quantification of the potential for moving from category 2 to 1 explicitly. Following ref. 14 , the respondents first reported the lowest plausible value for the potential likelihood of movement (representing the lower end of a 95% confidence interval), then the upper likelihood and then their best guess for the median/most likely probability. They were also asked for the odds that their chosen interval contained the true value, which was used to scale responses to standard 80% credible intervals and limit overconfidence bias 13 , 15 . This question was not asked if the expert ranked the pathway as category 3, respecting the substantial uncertainty in that rating.

The fourth question involved the scale of potential impact from the NbCS, given the range of uncertainties associated with effectiveness, area of applicability and other factors. The question followed the same pattern as the third, first asking about lowest, then highest, then best estimate for potential scale of impact (in PgCO 2 e yr −1 ). Experts were again asked to express their confidence in their own range, which was used to scale to a standard 80% credible interval. This estimate represents a consolidation of the best-available science by the reviewers. For a complete review including individual studies and their respective findings, see the Supplementary Data . This question was not asked if the expert ranked the pathway as category 3, respecting the substantial uncertainty in that rating.

Final results

After collection of the final survey responses, results were anonymized and compiled by pathway. For overall visualization and discussion purposes, responses were combined into a mean and 20th to 80th percentile range. The strength of the expert elicitation process lies in the collection of several independent assessments. Those different responses represent real differences in data interpretation and synthesis ascribed by experts. This can have meaningful impacts on decision-making by different individuals and organizations (for example, those that are more optimistic or pessimistic about any given pathway). Therefore, individual anonymous responses were retained by pathway to show the diversity of responses for any given pathway. The experts surveyed, despite their broad range of expertise, ranked themselves as less familiar with category 3 pathways than category 1 or 2 (linear regression, P  < 0.001, F  = 59.6 2, 394 ); this could be because of a lack of appropriate experts—although they represented all principal fields—or simply because the data are limited in those areas.

Sensitivity

To check for robustness against sample size variation, we conducted a Monte Carlo sensitivity analysis of the data on each pathway to generate responses of a further ten hypothetical experts. Briefly, the extra samples were randomly drawn from the observed category ranking mean and standard deviations for each individual pathway and appended to the original list; values <1 or >3 were truncated to those values. This analysis resulted in only minor differences in the mean categorization across all pathways: the mean difference between the original and the boot-strapped data was 0.02 (s.d. = 0.05) with an absolute difference average of 0.06 (s.d. = 0.06). The maximum difference in means across all pathways was 0.20 (s.d. = 0.20) (Supplementary Table 2 ). The results suggest that the response values are stable to additional responses.

All processing was done in R 36 , with packages including fmsb 37 and forcats 38 .

Data availability

Anonymized expert elicitation responses are available on Zenodo 39 : https://doi.org/10.5281/zenodo.7859146 .

Code availability

R code for analysis available on Zenodo 39 : https://doi.org/10.5281/zenodo.7859146 .

Novick, K. A. et al. Informing nature‐based climate solutions for the United States with the best‐available science. Glob. Change Biol. 28 , 3778–3794 (2022).

Article   Google Scholar  

Cohen-Shacham, E., Walters, G., Janzen, C. & Maginnis, S. (eds) Nature-based Solutions to Address Global Societal Challenges (IUCN, 2016).

IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 375 , 20190120 (2020).

Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114 , 11645–11650 (2017).

Article   CAS   PubMed   PubMed Central   ADS   Google Scholar  

Blaufelder, C., Levy, C., Mannion, P. & Pinner, D. A. Blueprint for Scaling Voluntary Carbon Markets to Meet the Climate Challenge (McKinsey & Company, 2021).

Arcusa, S. & Sprenkle-Hyppolite, S. Snapshot of the carbon dioxide removal certification and standards ecosystem (2021–2022). Clim. Policy 22 , 1319–1332 (2022).

Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change Glob. Sustain. 3 , pe15 (2020).

Anderegg, W. R. Gambling with the climate: how risky of a bet are natural climate solutions? AGU Adv. 2 , e2021AV000490 (2021).

Article   ADS   Google Scholar  

Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5 , p337 (2018).

Bach, L. T., Gill, S. J., Rickaby, R. E., Gore, S. & Renforth, P. CO 2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. 1 , 7 (2019).

Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade‐offs. Glob. Change Biol. 26 , 1576–1591 (2019).

Speirs-Bridge, A. et al. Reducing overconfidence in the interval judgments of experts. Risk Anal. 30 , 512–523 (2010).

Article   PubMed   Google Scholar  

Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111 , 7176–7184 (2014).

Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F. & Wintle, B. C. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9 , 169–180 (2018).

Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368 , eaaz7005 (2020).

Article   CAS   PubMed   Google Scholar  

Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568 , 327–335 (2019).

Article   CAS   PubMed   ADS   Google Scholar  

Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnol. Oceanogr. 66 , 1639–1664 (2021).

Article   CAS   ADS   Google Scholar  

Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9 , 84–87 (2019).

Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375 , 20190128 (2020).

Article   CAS   Google Scholar  

Schulte, I., Eggers, J., Nielsen, J. Ø. & Fuss, S. What influences the implementation of natural climate solutions? A systematic map and review of the evidence. Environ. Res. Lett. 17 , p013002 (2022).

West, T. A., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117 , 24188–24194 (2020).

Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27 , 1328–1348 (2021).

López-Vallejo, M. in Towards an Emissions Trading System in Mexico: Rationale, Design and Connections with the Global Climate Agenda (ed. Lucatello, S.) 191–221 (Springer, 2022)

Oldfield, E. E. et al. Realizing the potential of agricultural soil carbon sequestration requires more effective accounting. Science 375 , 1222–1225 (2022).

Burkholz, C., Garcias-Bonet, N. & Duarte, C. M. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass ( Halophila stipulacea ) sediments. Biogeosciences 17 , 1717–1730 (2020).

Guenet, B. et al. Can N 2 O emissions offset the benefits from soil organic carbon storage? Glob. Change Biol. 27 , 237–256 (2021).

Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35 , pe2020GB006858 (2021).

Schwartzman, S. et al. Environmental integrity of emissions reductions depends on scale and systemic changes, not sector of origin. Environ. Res. Lett. 16 , p091001 (2021).

Crop and Livestock Products Database (FAO, 2022); https://www.fao.org/faostat/en/#data/QCL

Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4 , eaat1869 (2018).

Article   PubMed   PubMed Central   ADS   Google Scholar  

Meyer, S. E. Is climate change mitigation the best use of desert shrublands? Nat. Resour. Environ. Issues 17 , 2 (2011).

Google Scholar  

Lorenz, K. & Lal, R. Carbon Sequestration in Agricultural Ecosystems (Springer Cham, 2018).

Haya, B., So, I. & Elias, M. The Voluntary Registry Offsets Database (Univ. California, 2021); https://gspp.berkeley.edu/faculty-and-impact/centers/cepp/projects/berkeley-carbon-trading-project/offsets-database

Core Carbon Principles; CCP Attributes; Assessment Framework for Programs; and Assessment Procedure (ICVCM, 2023); https://icvcm.org/the-core-carbon-principles/

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

Nakazawa, M. fmsb: Functions for medical statistics book with some demographic data. R package version 0.7.4 https://CRAN.R-project.org/package=fmsb (2022).

Wickham, H. forcats: Tools for working with categorical variables (factors). R package version 0.5.2 https://CRAN.R-project.org/package=forcats (2022)

Buma, B. Nature-based climate solutions: expert elicitation data and analysis code. Zenodo https://doi.org/10.5281/zenodo.7859146 (2023).

Download references

Acknowledgements

This research was supported through gifts to the Environmental Defense Fund from the Bezos Earth Fund, King Philanthropies and Arcadia, a charitable fund of L. Rausing and P. Baldwin. We thank J. Rudek for help assembling the review and 30 experts who reviewed some or all of those data and protocol summaries (Supplementary Data ). S.M. was supported by a cooperative agreement between the National Science Foundation and Battelle that sponsors the National Ecological Observatory Network programme.

Author information

Present address: Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, USA

Present address: AtmoFacts, Longmont, CO, USA

R. N. Lubowski

Present address: Lombard Odier Investment Managers, New York, NY, USA

Present address: Ecological Carbon Offset Partners LLC, dba EP Carbon, Minneapolis, MN, USA

L. A. Moore

Present address: , San Francisco, CA, USA

J. Paltseva

Present address: ART, Arlington, VA, USA

N. A. Randazzo

Present address: NASA/GSFC, Greenbelt, MD, USA

Present address: University of Maryland, College Park, MD, USA

N. Uludere Aragon

Present address: Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, USA

These authors contributed equally: B. Buma, D. R. Gordon.

Authors and Affiliations

Environmental Defense Fund, New York, NY, USA

B. Buma, D. R. Gordon, K. M. Kleisner, A. Bartuska, J. R. Collins, A. J. Eagle, R. Fujita, E. Holst, J. M. Lavallee, R. N. Lubowski, C. Melikov, L. A. Moore, E. E. Oldfield, J. Paltseva, A. M. Raffeld, N. A. Randazzo, C. Schneider, N. Uludere Aragon & S. P. Hamburg

Department of Integrative Biology, University of Colorado, Denver, CO, USA

Department of Biology, University of Florida, Gainesville, FL, USA

D. R. Gordon

Resources for the Future, Washington, DC, USA

A. Bartuska

International Arctic Research Center, University of Alaska, Fairbanks, AK, USA

Department of Ecology Evolution and Environmental Biology and the Climate School, Columbia University, New York, NY, USA

The Nature Conservancy, Arlington, VA, USA

Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK

P. Friedlingstein

Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, CNRS, Ecole Normale Supérieure/Université PSL, Sorbonne Université, Ecole Polytechnique, Palaiseau, France

National Ecological Observatory Network, Battelle, Boulder, CO, USA

Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA

O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA

Department of Environmental Science and Policy, University of California, Davis, CA, USA

J. N. Sanchirico

Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

J. R. Collins

You can also search for this author in PubMed   Google Scholar

Contributions

D.R.G. and B.B. conceived of and executed the study design. D.R.G., K.M.K., J.R.C., A.J.E., R.F., E.H., J.M.L., R.N.L., C.M., L.A.M., E.E.O., J.P., A.M.R., N.A.R., C.S. and N.U.A. coordinated and conducted the literature review. G.M. and B.B. primarily designed the survey. A. Bartuska, A. Bidlack, B.B., J.N.S., K.N., P.E., P.F., R.D. and S.M. contributed to the elicitation. B.B. conducted the analysis and coding. S.P.H. coordinated funding. B.B. and D.R.G. were primary writers; all authors were invited to contribute to the initial drafting.

Corresponding author

Correspondence to B. Buma .

Ethics declarations

Competing interests.

The authors declare no competing interests. In the interest of full transparency, we note that while B.B., D.R.G., K.M.K., A.B., J.R.C., A.J.E., R.F., E.H., J.M.L., R.N.L., C.M., L.A.M., E.E.O., J.P., A.M.R., N.A.R., C.S., N.U.A., S.P.H. and P.E. are employed by organizations that have taken positions on specific NbCS frameworks or carbon crediting pathways (not the focus of this work), none have financial or other competing interest in any of the pathways and all relied on independent science in their contributions to the work.

Peer review

Peer review information.

Nature Climate Change thanks Camila Donatti, Connor Nolan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

Supplementary Tables 1–4, Figs. 1–3 and survey instrument.

Supplementary Data

Literature review and list of reviewers.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Buma, B., Gordon, D.R., Kleisner, K.M. et al. Expert review of the science underlying nature-based climate solutions. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01960-0

Download citation

Received : 24 April 2023

Accepted : 20 February 2024

Published : 21 March 2024

DOI : https://doi.org/10.1038/s41558-024-01960-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

need and importance of review of literature in research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.21(3); Fall 2022

Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks: An Introduction for New Biology Education Researchers

Julie a. luft.

† Department of Mathematics, Social Studies, and Science Education, Mary Frances Early College of Education, University of Georgia, Athens, GA 30602-7124

Sophia Jeong

‡ Department of Teaching & Learning, College of Education & Human Ecology, Ohio State University, Columbus, OH 43210

Robert Idsardi

§ Department of Biology, Eastern Washington University, Cheney, WA 99004

Grant Gardner

∥ Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132

Associated Data

To frame their work, biology education researchers need to consider the role of literature reviews, theoretical frameworks, and conceptual frameworks as critical elements of the research and writing process. However, these elements can be confusing for scholars new to education research. This Research Methods article is designed to provide an overview of each of these elements and delineate the purpose of each in the educational research process. We describe what biology education researchers should consider as they conduct literature reviews, identify theoretical frameworks, and construct conceptual frameworks. Clarifying these different components of educational research studies can be helpful to new biology education researchers and the biology education research community at large in situating their work in the broader scholarly literature.

INTRODUCTION

Discipline-based education research (DBER) involves the purposeful and situated study of teaching and learning in specific disciplinary areas ( Singer et al. , 2012 ). Studies in DBER are guided by research questions that reflect disciplines’ priorities and worldviews. Researchers can use quantitative data, qualitative data, or both to answer these research questions through a variety of methodological traditions. Across all methodologies, there are different methods associated with planning and conducting educational research studies that include the use of surveys, interviews, observations, artifacts, or instruments. Ensuring the coherence of these elements to the discipline’s perspective also involves situating the work in the broader scholarly literature. The tools for doing this include literature reviews, theoretical frameworks, and conceptual frameworks. However, the purpose and function of each of these elements is often confusing to new education researchers. The goal of this article is to introduce new biology education researchers to these three important elements important in DBER scholarship and the broader educational literature.

The first element we discuss is a review of research (literature reviews), which highlights the need for a specific research question, study problem, or topic of investigation. Literature reviews situate the relevance of the study within a topic and a field. The process may seem familiar to science researchers entering DBER fields, but new researchers may still struggle in conducting the review. Booth et al. (2016b) highlight some of the challenges novice education researchers face when conducting a review of literature. They point out that novice researchers struggle in deciding how to focus the review, determining the scope of articles needed in the review, and knowing how to be critical of the articles in the review. Overcoming these challenges (and others) can help novice researchers construct a sound literature review that can inform the design of the study and help ensure the work makes a contribution to the field.

The second and third highlighted elements are theoretical and conceptual frameworks. These guide biology education research (BER) studies, and may be less familiar to science researchers. These elements are important in shaping the construction of new knowledge. Theoretical frameworks offer a way to explain and interpret the studied phenomenon, while conceptual frameworks clarify assumptions about the studied phenomenon. Despite the importance of these constructs in educational research, biology educational researchers have noted the limited use of theoretical or conceptual frameworks in published work ( DeHaan, 2011 ; Dirks, 2011 ; Lo et al. , 2019 ). In reviewing articles published in CBE—Life Sciences Education ( LSE ) between 2015 and 2019, we found that fewer than 25% of the research articles had a theoretical or conceptual framework (see the Supplemental Information), and at times there was an inconsistent use of theoretical and conceptual frameworks. Clearly, these frameworks are challenging for published biology education researchers, which suggests the importance of providing some initial guidance to new biology education researchers.

Fortunately, educational researchers have increased their explicit use of these frameworks over time, and this is influencing educational research in science, technology, engineering, and mathematics (STEM) fields. For instance, a quick search for theoretical or conceptual frameworks in the abstracts of articles in Educational Research Complete (a common database for educational research) in STEM fields demonstrates a dramatic change over the last 20 years: from only 778 articles published between 2000 and 2010 to 5703 articles published between 2010 and 2020, a more than sevenfold increase. Greater recognition of the importance of these frameworks is contributing to DBER authors being more explicit about such frameworks in their studies.

Collectively, literature reviews, theoretical frameworks, and conceptual frameworks work to guide methodological decisions and the elucidation of important findings. Each offers a different perspective on the problem of study and is an essential element in all forms of educational research. As new researchers seek to learn about these elements, they will find different resources, a variety of perspectives, and many suggestions about the construction and use of these elements. The wide range of available information can overwhelm the new researcher who just wants to learn the distinction between these elements or how to craft them adequately.

Our goal in writing this paper is not to offer specific advice about how to write these sections in scholarly work. Instead, we wanted to introduce these elements to those who are new to BER and who are interested in better distinguishing one from the other. In this paper, we share the purpose of each element in BER scholarship, along with important points on its construction. We also provide references for additional resources that may be beneficial to better understanding each element. Table 1 summarizes the key distinctions among these elements.

Comparison of literature reviews, theoretical frameworks, and conceptual reviews

This article is written for the new biology education researcher who is just learning about these different elements or for scientists looking to become more involved in BER. It is a result of our own work as science education and biology education researchers, whether as graduate students and postdoctoral scholars or newly hired and established faculty members. This is the article we wish had been available as we started to learn about these elements or discussed them with new educational researchers in biology.

LITERATURE REVIEWS

Purpose of a literature review.

A literature review is foundational to any research study in education or science. In education, a well-conceptualized and well-executed review provides a summary of the research that has already been done on a specific topic and identifies questions that remain to be answered, thus illustrating the current research project’s potential contribution to the field and the reasoning behind the methodological approach selected for the study ( Maxwell, 2012 ). BER is an evolving disciplinary area that is redefining areas of conceptual emphasis as well as orientations toward teaching and learning (e.g., Labov et al. , 2010 ; American Association for the Advancement of Science, 2011 ; Nehm, 2019 ). As a result, building comprehensive, critical, purposeful, and concise literature reviews can be a challenge for new biology education researchers.

Building Literature Reviews

There are different ways to approach and construct a literature review. Booth et al. (2016a) provide an overview that includes, for example, scoping reviews, which are focused only on notable studies and use a basic method of analysis, and integrative reviews, which are the result of exhaustive literature searches across different genres. Underlying each of these different review processes are attention to the s earch process, a ppraisa l of articles, s ynthesis of the literature, and a nalysis: SALSA ( Booth et al. , 2016a ). This useful acronym can help the researcher focus on the process while building a specific type of review.

However, new educational researchers often have questions about literature reviews that are foundational to SALSA or other approaches. Common questions concern determining which literature pertains to the topic of study or the role of the literature review in the design of the study. This section addresses such questions broadly while providing general guidance for writing a narrative literature review that evaluates the most pertinent studies.

The literature review process should begin before the research is conducted. As Boote and Beile (2005 , p. 3) suggested, researchers should be “scholars before researchers.” They point out that having a good working knowledge of the proposed topic helps illuminate avenues of study. Some subject areas have a deep body of work to read and reflect upon, providing a strong foundation for developing the research question(s). For instance, the teaching and learning of evolution is an area of long-standing interest in the BER community, generating many studies (e.g., Perry et al. , 2008 ; Barnes and Brownell, 2016 ) and reviews of research (e.g., Sickel and Friedrichsen, 2013 ; Ziadie and Andrews, 2018 ). Emerging areas of BER include the affective domain, issues of transfer, and metacognition ( Singer et al. , 2012 ). Many studies in these areas are transdisciplinary and not always specific to biology education (e.g., Rodrigo-Peiris et al. , 2018 ; Kolpikova et al. , 2019 ). These newer areas may require reading outside BER; fortunately, summaries of some of these topics can be found in the Current Insights section of the LSE website.

In focusing on a specific problem within a broader research strand, a new researcher will likely need to examine research outside BER. Depending upon the area of study, the expanded reading list might involve a mix of BER, DBER, and educational research studies. Determining the scope of the reading is not always straightforward. A simple way to focus one’s reading is to create a “summary phrase” or “research nugget,” which is a very brief descriptive statement about the study. It should focus on the essence of the study, for example, “first-year nonmajor students’ understanding of evolution,” “metacognitive prompts to enhance learning during biochemistry,” or “instructors’ inquiry-based instructional practices after professional development programming.” This type of phrase should help a new researcher identify two or more areas to review that pertain to the study. Focusing on recent research in the last 5 years is a good first step. Additional studies can be identified by reading relevant works referenced in those articles. It is also important to read seminal studies that are more than 5 years old. Reading a range of studies should give the researcher the necessary command of the subject in order to suggest a research question.

Given that the research question(s) arise from the literature review, the review should also substantiate the selected methodological approach. The review and research question(s) guide the researcher in determining how to collect and analyze data. Often the methodological approach used in a study is selected to contribute knowledge that expands upon what has been published previously about the topic (see Institute of Education Sciences and National Science Foundation, 2013 ). An emerging topic of study may need an exploratory approach that allows for a description of the phenomenon and development of a potential theory. This could, but not necessarily, require a methodological approach that uses interviews, observations, surveys, or other instruments. An extensively studied topic may call for the additional understanding of specific factors or variables; this type of study would be well suited to a verification or a causal research design. These could entail a methodological approach that uses valid and reliable instruments, observations, or interviews to determine an effect in the studied event. In either of these examples, the researcher(s) may use a qualitative, quantitative, or mixed methods methodological approach.

Even with a good research question, there is still more reading to be done. The complexity and focus of the research question dictates the depth and breadth of the literature to be examined. Questions that connect multiple topics can require broad literature reviews. For instance, a study that explores the impact of a biology faculty learning community on the inquiry instruction of faculty could have the following review areas: learning communities among biology faculty, inquiry instruction among biology faculty, and inquiry instruction among biology faculty as a result of professional learning. Biology education researchers need to consider whether their literature review requires studies from different disciplines within or outside DBER. For the example given, it would be fruitful to look at research focused on learning communities with faculty in STEM fields or in general education fields that result in instructional change. It is important not to be too narrow or too broad when reading. When the conclusions of articles start to sound similar or no new insights are gained, the researcher likely has a good foundation for a literature review. This level of reading should allow the researcher to demonstrate a mastery in understanding the researched topic, explain the suitability of the proposed research approach, and point to the need for the refined research question(s).

The literature review should include the researcher’s evaluation and critique of the selected studies. A researcher may have a large collection of studies, but not all of the studies will follow standards important in the reporting of empirical work in the social sciences. The American Educational Research Association ( Duran et al. , 2006 ), for example, offers a general discussion about standards for such work: an adequate review of research informing the study, the existence of sound and appropriate data collection and analysis methods, and appropriate conclusions that do not overstep or underexplore the analyzed data. The Institute of Education Sciences and National Science Foundation (2013) also offer Common Guidelines for Education Research and Development that can be used to evaluate collected studies.

Because not all journals adhere to such standards, it is important that a researcher review each study to determine the quality of published research, per the guidelines suggested earlier. In some instances, the research may be fatally flawed. Examples of such flaws include data that do not pertain to the question, a lack of discussion about the data collection, poorly constructed instruments, or an inadequate analysis. These types of errors result in studies that are incomplete, error-laden, or inaccurate and should be excluded from the review. Most studies have limitations, and the author(s) often make them explicit. For instance, there may be an instructor effect, recognized bias in the analysis, or issues with the sample population. Limitations are usually addressed by the research team in some way to ensure a sound and acceptable research process. Occasionally, the limitations associated with the study can be significant and not addressed adequately, which leaves a consequential decision in the hands of the researcher. Providing critiques of studies in the literature review process gives the reader confidence that the researcher has carefully examined relevant work in preparation for the study and, ultimately, the manuscript.

A solid literature review clearly anchors the proposed study in the field and connects the research question(s), the methodological approach, and the discussion. Reviewing extant research leads to research questions that will contribute to what is known in the field. By summarizing what is known, the literature review points to what needs to be known, which in turn guides decisions about methodology. Finally, notable findings of the new study are discussed in reference to those described in the literature review.

Within published BER studies, literature reviews can be placed in different locations in an article. When included in the introductory section of the study, the first few paragraphs of the manuscript set the stage, with the literature review following the opening paragraphs. Cooper et al. (2019) illustrate this approach in their study of course-based undergraduate research experiences (CUREs). An introduction discussing the potential of CURES is followed by an analysis of the existing literature relevant to the design of CUREs that allows for novel student discoveries. Within this review, the authors point out contradictory findings among research on novel student discoveries. This clarifies the need for their study, which is described and highlighted through specific research aims.

A literature reviews can also make up a separate section in a paper. For example, the introduction to Todd et al. (2019) illustrates the need for their research topic by highlighting the potential of learning progressions (LPs) and suggesting that LPs may help mitigate learning loss in genetics. At the end of the introduction, the authors state their specific research questions. The review of literature following this opening section comprises two subsections. One focuses on learning loss in general and examines a variety of studies and meta-analyses from the disciplines of medical education, mathematics, and reading. The second section focuses specifically on LPs in genetics and highlights student learning in the midst of LPs. These separate reviews provide insights into the stated research question.

Suggestions and Advice

A well-conceptualized, comprehensive, and critical literature review reveals the understanding of the topic that the researcher brings to the study. Literature reviews should not be so big that there is no clear area of focus; nor should they be so narrow that no real research question arises. The task for a researcher is to craft an efficient literature review that offers a critical analysis of published work, articulates the need for the study, guides the methodological approach to the topic of study, and provides an adequate foundation for the discussion of the findings.

In our own writing of literature reviews, there are often many drafts. An early draft may seem well suited to the study because the need for and approach to the study are well described. However, as the results of the study are analyzed and findings begin to emerge, the existing literature review may be inadequate and need revision. The need for an expanded discussion about the research area can result in the inclusion of new studies that support the explanation of a potential finding. The literature review may also prove to be too broad. Refocusing on a specific area allows for more contemplation of a finding.

It should be noted that there are different types of literature reviews, and many books and articles have been written about the different ways to embark on these types of reviews. Among these different resources, the following may be helpful in considering how to refine the review process for scholarly journals:

  • Booth, A., Sutton, A., & Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. This book addresses different types of literature reviews and offers important suggestions pertaining to defining the scope of the literature review and assessing extant studies.
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago: University of Chicago Press. This book can help the novice consider how to make the case for an area of study. While this book is not specifically about literature reviews, it offers suggestions about making the case for your study.
  • Galvan, J. L., & Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). Routledge. This book offers guidance on writing different types of literature reviews. For the novice researcher, there are useful suggestions for creating coherent literature reviews.

THEORETICAL FRAMEWORKS

Purpose of theoretical frameworks.

As new education researchers may be less familiar with theoretical frameworks than with literature reviews, this discussion begins with an analogy. Envision a biologist, chemist, and physicist examining together the dramatic effect of a fog tsunami over the ocean. A biologist gazing at this phenomenon may be concerned with the effect of fog on various species. A chemist may be interested in the chemical composition of the fog as water vapor condenses around bits of salt. A physicist may be focused on the refraction of light to make fog appear to be “sitting” above the ocean. While observing the same “objective event,” the scientists are operating under different theoretical frameworks that provide a particular perspective or “lens” for the interpretation of the phenomenon. Each of these scientists brings specialized knowledge, experiences, and values to this phenomenon, and these influence the interpretation of the phenomenon. The scientists’ theoretical frameworks influence how they design and carry out their studies and interpret their data.

Within an educational study, a theoretical framework helps to explain a phenomenon through a particular lens and challenges and extends existing knowledge within the limitations of that lens. Theoretical frameworks are explicitly stated by an educational researcher in the paper’s framework, theory, or relevant literature section. The framework shapes the types of questions asked, guides the method by which data are collected and analyzed, and informs the discussion of the results of the study. It also reveals the researcher’s subjectivities, for example, values, social experience, and viewpoint ( Allen, 2017 ). It is essential that a novice researcher learn to explicitly state a theoretical framework, because all research questions are being asked from the researcher’s implicit or explicit assumptions of a phenomenon of interest ( Schwandt, 2000 ).

Selecting Theoretical Frameworks

Theoretical frameworks are one of the most contemplated elements in our work in educational research. In this section, we share three important considerations for new scholars selecting a theoretical framework.

The first step in identifying a theoretical framework involves reflecting on the phenomenon within the study and the assumptions aligned with the phenomenon. The phenomenon involves the studied event. There are many possibilities, for example, student learning, instructional approach, or group organization. A researcher holds assumptions about how the phenomenon will be effected, influenced, changed, or portrayed. It is ultimately the researcher’s assumption(s) about the phenomenon that aligns with a theoretical framework. An example can help illustrate how a researcher’s reflection on the phenomenon and acknowledgment of assumptions can result in the identification of a theoretical framework.

In our example, a biology education researcher may be interested in exploring how students’ learning of difficult biological concepts can be supported by the interactions of group members. The phenomenon of interest is the interactions among the peers, and the researcher assumes that more knowledgeable students are important in supporting the learning of the group. As a result, the researcher may draw on Vygotsky’s (1978) sociocultural theory of learning and development that is focused on the phenomenon of student learning in a social setting. This theory posits the critical nature of interactions among students and between students and teachers in the process of building knowledge. A researcher drawing upon this framework holds the assumption that learning is a dynamic social process involving questions and explanations among students in the classroom and that more knowledgeable peers play an important part in the process of building conceptual knowledge.

It is important to state at this point that there are many different theoretical frameworks. Some frameworks focus on learning and knowing, while other theoretical frameworks focus on equity, empowerment, or discourse. Some frameworks are well articulated, and others are still being refined. For a new researcher, it can be challenging to find a theoretical framework. Two of the best ways to look for theoretical frameworks is through published works that highlight different frameworks.

When a theoretical framework is selected, it should clearly connect to all parts of the study. The framework should augment the study by adding a perspective that provides greater insights into the phenomenon. It should clearly align with the studies described in the literature review. For instance, a framework focused on learning would correspond to research that reported different learning outcomes for similar studies. The methods for data collection and analysis should also correspond to the framework. For instance, a study about instructional interventions could use a theoretical framework concerned with learning and could collect data about the effect of the intervention on what is learned. When the data are analyzed, the theoretical framework should provide added meaning to the findings, and the findings should align with the theoretical framework.

A study by Jensen and Lawson (2011) provides an example of how a theoretical framework connects different parts of the study. They compared undergraduate biology students in heterogeneous and homogeneous groups over the course of a semester. Jensen and Lawson (2011) assumed that learning involved collaboration and more knowledgeable peers, which made Vygotsky’s (1978) theory a good fit for their study. They predicted that students in heterogeneous groups would experience greater improvement in their reasoning abilities and science achievements with much of the learning guided by the more knowledgeable peers.

In the enactment of the study, they collected data about the instruction in traditional and inquiry-oriented classes, while the students worked in homogeneous or heterogeneous groups. To determine the effect of working in groups, the authors also measured students’ reasoning abilities and achievement. Each data-collection and analysis decision connected to understanding the influence of collaborative work.

Their findings highlighted aspects of Vygotsky’s (1978) theory of learning. One finding, for instance, posited that inquiry instruction, as a whole, resulted in reasoning and achievement gains. This links to Vygotsky (1978) , because inquiry instruction involves interactions among group members. A more nuanced finding was that group composition had a conditional effect. Heterogeneous groups performed better with more traditional and didactic instruction, regardless of the reasoning ability of the group members. Homogeneous groups worked better during interaction-rich activities for students with low reasoning ability. The authors attributed the variation to the different types of helping behaviors of students. High-performing students provided the answers, while students with low reasoning ability had to work collectively through the material. In terms of Vygotsky (1978) , this finding provided new insights into the learning context in which productive interactions can occur for students.

Another consideration in the selection and use of a theoretical framework pertains to its orientation to the study. This can result in the theoretical framework prioritizing individuals, institutions, and/or policies ( Anfara and Mertz, 2014 ). Frameworks that connect to individuals, for instance, could contribute to understanding their actions, learning, or knowledge. Institutional frameworks, on the other hand, offer insights into how institutions, organizations, or groups can influence individuals or materials. Policy theories provide ways to understand how national or local policies can dictate an emphasis on outcomes or instructional design. These different types of frameworks highlight different aspects in an educational setting, which influences the design of the study and the collection of data. In addition, these different frameworks offer a way to make sense of the data. Aligning the data collection and analysis with the framework ensures that a study is coherent and can contribute to the field.

New understandings emerge when different theoretical frameworks are used. For instance, Ebert-May et al. (2015) prioritized the individual level within conceptual change theory (see Posner et al. , 1982 ). In this theory, an individual’s knowledge changes when it no longer fits the phenomenon. Ebert-May et al. (2015) designed a professional development program challenging biology postdoctoral scholars’ existing conceptions of teaching. The authors reported that the biology postdoctoral scholars’ teaching practices became more student-centered as they were challenged to explain their instructional decision making. According to the theory, the biology postdoctoral scholars’ dissatisfaction in their descriptions of teaching and learning initiated change in their knowledge and instruction. These results reveal how conceptual change theory can explain the learning of participants and guide the design of professional development programming.

The communities of practice (CoP) theoretical framework ( Lave, 1988 ; Wenger, 1998 ) prioritizes the institutional level , suggesting that learning occurs when individuals learn from and contribute to the communities in which they reside. Grounded in the assumption of community learning, the literature on CoP suggests that, as individuals interact regularly with the other members of their group, they learn about the rules, roles, and goals of the community ( Allee, 2000 ). A study conducted by Gehrke and Kezar (2017) used the CoP framework to understand organizational change by examining the involvement of individual faculty engaged in a cross-institutional CoP focused on changing the instructional practice of faculty at each institution. In the CoP, faculty members were involved in enhancing instructional materials within their department, which aligned with an overarching goal of instituting instruction that embraced active learning. Not surprisingly, Gehrke and Kezar (2017) revealed that faculty who perceived the community culture as important in their work cultivated institutional change. Furthermore, they found that institutional change was sustained when key leaders served as mentors and provided support for faculty, and as faculty themselves developed into leaders. This study reveals the complexity of individual roles in a COP in order to support institutional instructional change.

It is important to explicitly state the theoretical framework used in a study, but elucidating a theoretical framework can be challenging for a new educational researcher. The literature review can help to identify an applicable theoretical framework. Focal areas of the review or central terms often connect to assumptions and assertions associated with the framework that pertain to the phenomenon of interest. Another way to identify a theoretical framework is self-reflection by the researcher on personal beliefs and understandings about the nature of knowledge the researcher brings to the study ( Lysaght, 2011 ). In stating one’s beliefs and understandings related to the study (e.g., students construct their knowledge, instructional materials support learning), an orientation becomes evident that will suggest a particular theoretical framework. Theoretical frameworks are not arbitrary , but purposefully selected.

With experience, a researcher may find expanded roles for theoretical frameworks. Researchers may revise an existing framework that has limited explanatory power, or they may decide there is a need to develop a new theoretical framework. These frameworks can emerge from a current study or the need to explain a phenomenon in a new way. Researchers may also find that multiple theoretical frameworks are necessary to frame and explore a problem, as different frameworks can provide different insights into a problem.

Finally, it is important to recognize that choosing “x” theoretical framework does not necessarily mean a researcher chooses “y” methodology and so on, nor is there a clear-cut, linear process in selecting a theoretical framework for one’s study. In part, the nonlinear process of identifying a theoretical framework is what makes understanding and using theoretical frameworks challenging. For the novice scholar, contemplating and understanding theoretical frameworks is essential. Fortunately, there are articles and books that can help:

  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. This book provides an overview of theoretical frameworks in general educational research.
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research. Physical Review Physics Education Research , 15 (2), 020101-1–020101-13. This paper illustrates how a DBER field can use theoretical frameworks.
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems. Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 . This paper articulates the need for studies in BER to explicitly state theoretical frameworks and provides examples of potential studies.
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Sage. This book also provides an overview of theoretical frameworks, but for both research and evaluation.

CONCEPTUAL FRAMEWORKS

Purpose of a conceptual framework.

A conceptual framework is a description of the way a researcher understands the factors and/or variables that are involved in the study and their relationships to one another. The purpose of a conceptual framework is to articulate the concepts under study using relevant literature ( Rocco and Plakhotnik, 2009 ) and to clarify the presumed relationships among those concepts ( Rocco and Plakhotnik, 2009 ; Anfara and Mertz, 2014 ). Conceptual frameworks are different from theoretical frameworks in both their breadth and grounding in established findings. Whereas a theoretical framework articulates the lens through which a researcher views the work, the conceptual framework is often more mechanistic and malleable.

Conceptual frameworks are broader, encompassing both established theories (i.e., theoretical frameworks) and the researchers’ own emergent ideas. Emergent ideas, for example, may be rooted in informal and/or unpublished observations from experience. These emergent ideas would not be considered a “theory” if they are not yet tested, supported by systematically collected evidence, and peer reviewed. However, they do still play an important role in the way researchers approach their studies. The conceptual framework allows authors to clearly describe their emergent ideas so that connections among ideas in the study and the significance of the study are apparent to readers.

Constructing Conceptual Frameworks

Including a conceptual framework in a research study is important, but researchers often opt to include either a conceptual or a theoretical framework. Either may be adequate, but both provide greater insight into the research approach. For instance, a research team plans to test a novel component of an existing theory. In their study, they describe the existing theoretical framework that informs their work and then present their own conceptual framework. Within this conceptual framework, specific topics portray emergent ideas that are related to the theory. Describing both frameworks allows readers to better understand the researchers’ assumptions, orientations, and understanding of concepts being investigated. For example, Connolly et al. (2018) included a conceptual framework that described how they applied a theoretical framework of social cognitive career theory (SCCT) to their study on teaching programs for doctoral students. In their conceptual framework, the authors described SCCT, explained how it applied to the investigation, and drew upon results from previous studies to justify the proposed connections between the theory and their emergent ideas.

In some cases, authors may be able to sufficiently describe their conceptualization of the phenomenon under study in an introduction alone, without a separate conceptual framework section. However, incomplete descriptions of how the researchers conceptualize the components of the study may limit the significance of the study by making the research less intelligible to readers. This is especially problematic when studying topics in which researchers use the same terms for different constructs or different terms for similar and overlapping constructs (e.g., inquiry, teacher beliefs, pedagogical content knowledge, or active learning). Authors must describe their conceptualization of a construct if the research is to be understandable and useful.

There are some key areas to consider regarding the inclusion of a conceptual framework in a study. To begin with, it is important to recognize that conceptual frameworks are constructed by the researchers conducting the study ( Rocco and Plakhotnik, 2009 ; Maxwell, 2012 ). This is different from theoretical frameworks that are often taken from established literature. Researchers should bring together ideas from the literature, but they may be influenced by their own experiences as a student and/or instructor, the shared experiences of others, or thought experiments as they construct a description, model, or representation of their understanding of the phenomenon under study. This is an exercise in intellectual organization and clarity that often considers what is learned, known, and experienced. The conceptual framework makes these constructs explicitly visible to readers, who may have different understandings of the phenomenon based on their prior knowledge and experience. There is no single method to go about this intellectual work.

Reeves et al. (2016) is an example of an article that proposed a conceptual framework about graduate teaching assistant professional development evaluation and research. The authors used existing literature to create a novel framework that filled a gap in current research and practice related to the training of graduate teaching assistants. This conceptual framework can guide the systematic collection of data by other researchers because the framework describes the relationships among various factors that influence teaching and learning. The Reeves et al. (2016) conceptual framework may be modified as additional data are collected and analyzed by other researchers. This is not uncommon, as conceptual frameworks can serve as catalysts for concerted research efforts that systematically explore a phenomenon (e.g., Reynolds et al. , 2012 ; Brownell and Kloser, 2015 ).

Sabel et al. (2017) used a conceptual framework in their exploration of how scaffolds, an external factor, interact with internal factors to support student learning. Their conceptual framework integrated principles from two theoretical frameworks, self-regulated learning and metacognition, to illustrate how the research team conceptualized students’ use of scaffolds in their learning ( Figure 1 ). Sabel et al. (2017) created this model using their interpretations of these two frameworks in the context of their teaching.

An external file that holds a picture, illustration, etc.
Object name is cbe-21-rm33-g001.jpg

Conceptual framework from Sabel et al. (2017) .

A conceptual framework should describe the relationship among components of the investigation ( Anfara and Mertz, 2014 ). These relationships should guide the researcher’s methods of approaching the study ( Miles et al. , 2014 ) and inform both the data to be collected and how those data should be analyzed. Explicitly describing the connections among the ideas allows the researcher to justify the importance of the study and the rigor of the research design. Just as importantly, these frameworks help readers understand why certain components of a system were not explored in the study. This is a challenge in education research, which is rooted in complex environments with many variables that are difficult to control.

For example, Sabel et al. (2017) stated: “Scaffolds, such as enhanced answer keys and reflection questions, can help students and instructors bridge the external and internal factors and support learning” (p. 3). They connected the scaffolds in the study to the three dimensions of metacognition and the eventual transformation of existing ideas into new or revised ideas. Their framework provides a rationale for focusing on how students use two different scaffolds, and not on other factors that may influence a student’s success (self-efficacy, use of active learning, exam format, etc.).

In constructing conceptual frameworks, researchers should address needed areas of study and/or contradictions discovered in literature reviews. By attending to these areas, researchers can strengthen their arguments for the importance of a study. For instance, conceptual frameworks can address how the current study will fill gaps in the research, resolve contradictions in existing literature, or suggest a new area of study. While a literature review describes what is known and not known about the phenomenon, the conceptual framework leverages these gaps in describing the current study ( Maxwell, 2012 ). In the example of Sabel et al. (2017) , the authors indicated there was a gap in the literature regarding how scaffolds engage students in metacognition to promote learning in large classes. Their study helps fill that gap by describing how scaffolds can support students in the three dimensions of metacognition: intelligibility, plausibility, and wide applicability. In another example, Lane (2016) integrated research from science identity, the ethic of care, the sense of belonging, and an expertise model of student success to form a conceptual framework that addressed the critiques of other frameworks. In a more recent example, Sbeglia et al. (2021) illustrated how a conceptual framework influences the methodological choices and inferences in studies by educational researchers.

Sometimes researchers draw upon the conceptual frameworks of other researchers. When a researcher’s conceptual framework closely aligns with an existing framework, the discussion may be brief. For example, Ghee et al. (2016) referred to portions of SCCT as their conceptual framework to explain the significance of their work on students’ self-efficacy and career interests. Because the authors’ conceptualization of this phenomenon aligned with a previously described framework, they briefly mentioned the conceptual framework and provided additional citations that provided more detail for the readers.

Within both the BER and the broader DBER communities, conceptual frameworks have been used to describe different constructs. For example, some researchers have used the term “conceptual framework” to describe students’ conceptual understandings of a biological phenomenon. This is distinct from a researcher’s conceptual framework of the educational phenomenon under investigation, which may also need to be explicitly described in the article. Other studies have presented a research logic model or flowchart of the research design as a conceptual framework. These constructions can be quite valuable in helping readers understand the data-collection and analysis process. However, a model depicting the study design does not serve the same role as a conceptual framework. Researchers need to avoid conflating these constructs by differentiating the researchers’ conceptual framework that guides the study from the research design, when applicable.

Explicitly describing conceptual frameworks is essential in depicting the focus of the study. We have found that being explicit in a conceptual framework means using accepted terminology, referencing prior work, and clearly noting connections between terms. This description can also highlight gaps in the literature or suggest potential contributions to the field of study. A well-elucidated conceptual framework can suggest additional studies that may be warranted. This can also spur other researchers to consider how they would approach the examination of a phenomenon and could result in a revised conceptual framework.

It can be challenging to create conceptual frameworks, but they are important. Below are two resources that could be helpful in constructing and presenting conceptual frameworks in educational research:

  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. Chapter 3 in this book describes how to construct conceptual frameworks.
  • Ravitch, S. M., & Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. This book explains how conceptual frameworks guide the research questions, data collection, data analyses, and interpretation of results.

CONCLUDING THOUGHTS

Literature reviews, theoretical frameworks, and conceptual frameworks are all important in DBER and BER. Robust literature reviews reinforce the importance of a study. Theoretical frameworks connect the study to the base of knowledge in educational theory and specify the researcher’s assumptions. Conceptual frameworks allow researchers to explicitly describe their conceptualization of the relationships among the components of the phenomenon under study. Table 1 provides a general overview of these components in order to assist biology education researchers in thinking about these elements.

It is important to emphasize that these different elements are intertwined. When these elements are aligned and complement one another, the study is coherent, and the study findings contribute to knowledge in the field. When literature reviews, theoretical frameworks, and conceptual frameworks are disconnected from one another, the study suffers. The point of the study is lost, suggested findings are unsupported, or important conclusions are invisible to the researcher. In addition, this misalignment may be costly in terms of time and money.

Conducting a literature review, selecting a theoretical framework, and building a conceptual framework are some of the most difficult elements of a research study. It takes time to understand the relevant research, identify a theoretical framework that provides important insights into the study, and formulate a conceptual framework that organizes the finding. In the research process, there is often a constant back and forth among these elements as the study evolves. With an ongoing refinement of the review of literature, clarification of the theoretical framework, and articulation of a conceptual framework, a sound study can emerge that makes a contribution to the field. This is the goal of BER and education research.

Supplementary Material

  • Allee, V. (2000). Knowledge networks and communities of learning . OD Practitioner , 32 ( 4 ), 4–13. [ Google Scholar ]
  • Allen, M. (2017). The Sage encyclopedia of communication research methods (Vols. 1–4 ). Los Angeles, CA: Sage. 10.4135/9781483381411 [ CrossRef ] [ Google Scholar ]
  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC. [ Google Scholar ]
  • Anfara, V. A., Mertz, N. T. (2014). Setting the stage . In Anfara, V. A., Mertz, N. T. (eds.), Theoretical frameworks in qualitative research (pp. 1–22). Sage. [ Google Scholar ]
  • Barnes, M. E., Brownell, S. E. (2016). Practices and perspectives of college instructors on addressing religious beliefs when teaching evolution . CBE—Life Sciences Education , 15 ( 2 ), ar18. https://doi.org/10.1187/cbe.15-11-0243 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boote, D. N., Beile, P. (2005). Scholars before researchers: On the centrality of the dissertation literature review in research preparation . Educational Researcher , 34 ( 6 ), 3–15. 10.3102/0013189x034006003 [ CrossRef ] [ Google Scholar ]
  • Booth, A., Sutton, A., Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago, IL: University of Chicago Press. [ Google Scholar ]
  • Brownell, S. E., Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology . Studies in Higher Education , 40 ( 3 ), 525–544. https://doi.org/10.1080/03075079.2015.1004234 [ Google Scholar ]
  • Connolly, M. R., Lee, Y. G., Savoy, J. N. (2018). The effects of doctoral teaching development on early-career STEM scholars’ college teaching self-efficacy . CBE—Life Sciences Education , 17 ( 1 ), ar14. https://doi.org/10.1187/cbe.17-02-0039 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cooper, K. M., Blattman, J. N., Hendrix, T., Brownell, S. E. (2019). The impact of broadly relevant novel discoveries on student project ownership in a traditional lab course turned CURE . CBE—Life Sciences Education , 18 ( 4 ), ar57. https://doi.org/10.1187/cbe.19-06-0113 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • DeHaan, R. L. (2011). Education research in the biological sciences: A nine decade review (Paper commissioned by the NAS/NRC Committee on the Status, Contributions, and Future Directions of Discipline Based Education Research) . Washington, DC: National Academies Press. Retrieved May 20, 2022, from www7.nationalacademies.org/bose/DBER_Mee ting2_commissioned_papers_page.html [ Google Scholar ]
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research . Physical Review Physics Education Research , 15 ( 2 ), 020101. [ Google Scholar ]
  • Dirks, C. (2011). The current status and future direction of biology education research . Paper presented at: Second Committee Meeting on the Status, Contributions, and Future Directions of Discipline-Based Education Research, 18–19 October (Washington, DC). Retrieved May 20, 2022, from http://sites.nationalacademies.org/DBASSE/BOSE/DBASSE_071087 [ Google Scholar ]
  • Duran, R. P., Eisenhart, M. A., Erickson, F. D., Grant, C. A., Green, J. L., Hedges, L. V., Schneider, B. L. (2006). Standards for reporting on empirical social science research in AERA publications: American Educational Research Association . Educational Researcher , 35 ( 6 ), 33–40. [ Google Scholar ]
  • Ebert-May, D., Derting, T. L., Henkel, T. P., Middlemis Maher, J., Momsen, J. L., Arnold, B., Passmore, H. A. (2015). Breaking the cycle: Future faculty begin teaching with learner-centered strategies after professional development . CBE—Life Sciences Education , 14 ( 2 ), ar22. https://doi.org/10.1187/cbe.14-12-0222 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Galvan, J. L., Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). New York, NY: Routledge. https://doi.org/10.4324/9781315229386 [ Google Scholar ]
  • Gehrke, S., Kezar, A. (2017). The roles of STEM faculty communities of practice in institutional and departmental reform in higher education . American Educational Research Journal , 54 ( 5 ), 803–833. https://doi.org/10.3102/0002831217706736 [ Google Scholar ]
  • Ghee, M., Keels, M., Collins, D., Neal-Spence, C., Baker, E. (2016). Fine-tuning summer research programs to promote underrepresented students’ persistence in the STEM pathway . CBE—Life Sciences Education , 15 ( 3 ), ar28. https://doi.org/10.1187/cbe.16-01-0046 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Institute of Education Sciences & National Science Foundation. (2013). Common guidelines for education research and development . Retrieved May 20, 2022, from www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf
  • Jensen, J. L., Lawson, A. (2011). Effects of collaborative group composition and inquiry instruction on reasoning gains and achievement in undergraduate biology . CBE—Life Sciences Education , 10 ( 1 ), 64–73. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kolpikova, E. P., Chen, D. C., Doherty, J. H. (2019). Does the format of preclass reading quizzes matter? An evaluation of traditional and gamified, adaptive preclass reading quizzes . CBE—Life Sciences Education , 18 ( 4 ), ar52. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Labov, J. B., Reid, A. H., Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education , 9 ( 1 ), 10–16. https://doi.org/10.1187/cbe.09-12-0092 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lane, T. B. (2016). Beyond academic and social integration: Understanding the impact of a STEM enrichment program on the retention and degree attainment of underrepresented students . CBE—Life Sciences Education , 15 ( 3 ), ar39. https://doi.org/10.1187/cbe.16-01-0070 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life . New York, NY: Cambridge University Press. [ Google Scholar ]
  • Lo, S. M., Gardner, G. E., Reid, J., Napoleon-Fanis, V., Carroll, P., Smith, E., Sato, B. K. (2019). Prevailing questions and methodologies in biology education research: A longitudinal analysis of research in CBE — Life Sciences Education and at the Society for the Advancement of Biology Education Research . CBE—Life Sciences Education , 18 ( 1 ), ar9. https://doi.org/10.1187/cbe.18-08-0164 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lysaght, Z. (2011). Epistemological and paradigmatic ecumenism in “Pasteur’s quadrant:” Tales from doctoral research . In Official Conference Proceedings of the Third Asian Conference on Education in Osaka, Japan . Retrieved May 20, 2022, from http://iafor.org/ace2011_offprint/ACE2011_offprint_0254.pdf
  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Miles, M. B., Huberman, A. M., Saldaña, J. (2014). Qualitative data analysis (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems . Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 [ Google Scholar ]
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Los Angeles, CA: Sage. [ Google Scholar ]
  • Perry, J., Meir, E., Herron, J. C., Maruca, S., Stal, D. (2008). Evaluating two approaches to helping college students understand evolutionary trees through diagramming tasks . CBE—Life Sciences Education , 7 ( 2 ), 193–201. https://doi.org/10.1187/cbe.07-01-0007 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Posner, G. J., Strike, K. A., Hewson, P. W., Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change . Science Education , 66 ( 2 ), 211–227. [ Google Scholar ]
  • Ravitch, S. M., Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. [ Google Scholar ]
  • Reeves, T. D., Marbach-Ad, G., Miller, K. R., Ridgway, J., Gardner, G. E., Schussler, E. E., Wischusen, E. W. (2016). A conceptual framework for graduate teaching assistant professional development evaluation and research . CBE—Life Sciences Education , 15 ( 2 ), es2. https://doi.org/10.1187/cbe.15-10-0225 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds, J. A., Thaiss, C., Katkin, W., Thompson, R. J. Jr. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , 11 ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rocco, T. S., Plakhotnik, M. S. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions . Human Resource Development Review , 8 ( 1 ), 120–130. https://doi.org/10.1177/1534484309332617 [ Google Scholar ]
  • Rodrigo-Peiris, T., Xiang, L., Cassone, V. M. (2018). A low-intensity, hybrid design between a “traditional” and a “course-based” research experience yields positive outcomes for science undergraduate freshmen and shows potential for large-scale application . CBE—Life Sciences Education , 17 ( 4 ), ar53. https://doi.org/10.1187/cbe.17-11-0248 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sabel, J. L., Dauer, J. T., Forbes, C. T. (2017). Introductory biology students’ use of enhanced answer keys and reflection questions to engage in metacognition and enhance understanding . CBE—Life Sciences Education , 16 ( 3 ), ar40. https://doi.org/10.1187/cbe.16-10-0298 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sbeglia, G. C., Goodridge, J. A., Gordon, L. H., Nehm, R. H. (2021). Are faculty changing? How reform frameworks, sampling intensities, and instrument measures impact inferences about student-centered teaching practices . CBE—Life Sciences Education , 20 ( 3 ), ar39. https://doi.org/10.1187/cbe.20-11-0259 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Schwandt, T. A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism . In Denzin, N. K., Lincoln, Y. S. (Eds.), Handbook of qualitative research (2nd ed., pp. 189–213). Los Angeles, CA: Sage. [ Google Scholar ]
  • Sickel, A. J., Friedrichsen, P. (2013). Examining the evolution education literature with a focus on teachers: Major findings, goals for teacher preparation, and directions for future research . Evolution: Education and Outreach , 6 ( 1 ), 23. https://doi.org/10.1186/1936-6434-6-23 [ Google Scholar ]
  • Singer, S. R., Nielsen, N. R., Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington, DC: National Academies Press. [ Google Scholar ]
  • Todd, A., Romine, W. L., Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context . Research in Science Education , 49 ( 2 ), 569–589. https://doi.org/10.1007/s11165-017-9626-2 [ Google Scholar ]
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Wenger, E. (1998). Communities of practice: Learning as a social system . Systems Thinker , 9 ( 5 ), 2–3. [ Google Scholar ]
  • Ziadie, M. A., Andrews, T. C. (2018). Moving evolution education forward: A systematic analysis of literature to identify gaps in collective knowledge for teaching . CBE—Life Sciences Education , 17 ( 1 ), ar11. https://doi.org/10.1187/cbe.17-08-0190 [ PMC free article ] [ PubMed ] [ Google Scholar ]

IMAGES

  1. The Importance of Literature Review in Scientific Research Writing by

    need and importance of review of literature in research

  2. Importance of literature review in research

    need and importance of review of literature in research

  3. Qualities of an effective literature review in a proposal

    need and importance of review of literature in research

  4. Why is it important to do a literature review in research?

    need and importance of review of literature in research

  5. How To Write A Literature Review

    need and importance of review of literature in research

  6. Importance of Literature Reviews & Writing Tips by IsEssay Writing

    need and importance of review of literature in research

VIDEO

  1. 3_session2 Importance of literature review, types of literature review, Reference management tool

  2. Difference between Research paper and a review. Which one is more important?

  3. Sources And Importance Of Literature Review(ENGLISH FOR RESEARCH PAPER WRITING)

  4. Literature Review Made Easy

  5. Approaches to Literature Review

  6. The Importance of Literature Review for Research Paper

COMMENTS

  1. Why is it important to do a literature review in research?

    "A substantive, thorough, sophisticated literature review is a precondition for doing substantive, thorough, sophisticated research". Boote and Baile 2005 . Authors of manuscripts treat writing a literature review as a routine work or a mere formality. But a seasoned one knows the purpose and importance of a well-written literature review.

  2. Writing a literature review

    Writing a literature review requires a range of skills to gather, sort, evaluate and summarise peer-reviewed published data into a relevant and informative unbiased narrative. Digital access to research papers, academic texts, review articles, reference databases and public data sets are all sources of information that are available to enrich ...

  3. Literature review as a research methodology: An ...

    This is why the literature review as a research method is more relevant than ever. Traditional literature reviews often lack thoroughness and rigor and are conducted ad hoc, rather than following a specific methodology. ... However, important to note is the need to provide reasoning and transparency concerning all choices made; there must be ...

  4. What is a literature review?

    A literature or narrative review is a comprehensive review and analysis of the published literature on a specific topic or research question. The literature that is reviewed contains: books, articles, academic articles, conference proceedings, association papers, and dissertations. It contains the most pertinent studies and points to important ...

  5. Reviewing literature for research: Doing it the right way

    Literature search. Fink has defined research literature review as a "systematic, explicit and reproducible method for identifying, evaluating, and synthesizing the existing body of completed and recorded work produced by researchers, scholars and practitioners."[]Review of research literature can be summarized into a seven step process: (i) Selecting research questions/purpose of the ...

  6. Research Guides: Literature Reviews: What is a Literature Review?

    A literature review is meant to analyze the scholarly literature, make connections across writings and identify strengths, weaknesses, trends, and missing conversations. A literature review should address different aspects of a topic as it relates to your research question. A literature review goes beyond a description or summary of the ...

  7. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  8. Literature Review: The What, Why and How-to Guide

    In writing the literature review, your purpose is to convey to your reader what knowledge and ideas have been established on a topic, and what their strengths and weaknesses are. As a piece of writing, the literature review must be defined by a guiding concept (e.g., your research objective, the problem or issue you are discussing, or your ...

  9. Conducting a Literature Review: Why Do A Literature Review?

    Besides the obvious reason for students -- because it is assigned! -- a literature review helps you explore the research that has come before you, to see how your research question has (or has not) already been addressed. You identify: core research in the field. experts in the subject area. methodology you may want to use (or avoid)

  10. Systematically Reviewing the Literature: Building the Evidence for

    Systematic reviews that summarize the available information on a topic are an important part of evidence-based health care. There are both research and non-research reasons for undertaking a literature review. It is important to systematically review the literature when one would like to justify the need for a study, to update personal ...

  11. Importance of a Good Literature Review

    A literature review is not only a summary of key sources, but has an organizational pattern which combines both summary and synthesis, often within specific conceptual categories.A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem.

  12. Ten Simple Rules for Writing a Literature Review

    Literature reviews are in great demand in most scientific fields. Their need stems from the ever-increasing output of scientific publications .For example, compared to 1991, in 2008 three, eight, and forty times more papers were indexed in Web of Science on malaria, obesity, and biodiversity, respectively .Given such mountains of papers, scientists cannot be expected to examine in detail every ...

  13. What is a literature review?

    A literature review serves two main purposes: 1) To show awareness of the present state of knowledge in a particular field, including: seminal authors. the main empirical research. theoretical positions. controversies. breakthroughs as well as links to other related areas of knowledge. 2) To provide a foundation for the author's research.

  14. Steps in Conducting a Literature Review

    Why is it important? A literature review is important because it: Explains the background of research on a topic. Demonstrates why a topic is significant to a subject area. Discovers relationships between research studies/ideas. Identifies major themes, concepts, and researchers on a topic. Identifies critical gaps and points of disagreement.

  15. 5. The Literature Review

    A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories.A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that ...

  16. Literature Reviews and Systematic Reviews of Research: The ...

    The systematic review is a method, which is the main aim to synthesize and summarize the results of studies on the same research area. Systematic reviews have some differences from literature reviews in some aspects. The most distinct difference is systematic reviews involve a detailed and well-defined plan with a search strategy (Uman, 2011 ).

  17. Literature Review in Research Writing

    A literature review is a study - or, more accurately, a survey - involving scholarly material, with the aim to discuss published information about a specific topic or research question. Therefore, to write a literature review, it is compulsory that you are a real expert in the object of study. The results and findings will be published and ...

  18. The Literature Review: A Foundation for High-Quality Medical Education

    Purpose and Importance of the Literature Review. An understanding of the current literature is critical for all phases of a research study. Lingard 9 recently invoked the "journal-as-conversation" metaphor as a way of understanding how one's research fits into the larger medical education conversation. As she described it: "Imagine yourself joining a conversation at a social event.

  19. The Importance of Literature Review in Research Writing

    A literature review helps you create a sense of rapport with your audience or readers so they can trust that you have done your homework. As a result, they can give you credit for your due diligence: you have done your fact-finding and fact-checking mission, one of the initial steps of any research writing.

  20. Importance and Issues of Literature Review in Research

    Some Issues in Liter ature R eview. 1. A continuous and time consuming process runs. through out r esearch work (more whil e selecting. a resear ch problem and writing 'r eview of. liter ature ...

  21. Why Is Literature Review Important? (3 Benefits Explained)

    Every research project needs a literature review. And while it's one of the most challenging parts of the assignment, in part because of the intensity of the research involved, it's by far the most important section of a research paper. ... But such an approach overlooks why a literature review is important. We need to take a step back and ...

  22. Approaching literature review for academic purposes: The Literature

    A sophisticated literature review (LR) can result in a robust dissertation/thesis by scrutinizing the main problem examined by the academic study; anticipating research hypotheses, methods and results; and maintaining the interest of the audience in how the dissertation/thesis will provide solutions for the current gaps in a particular field.

  23. Expert review of the science underlying nature-based climate solutions

    Nature-based climate solutions are widely incorporated into climate change mitigation plans and need firm scientific foundations. Through literature review and expert elicitation, this analysis ...

  24. The Economic Impacts and the Regulation of AI: A Review of the Academic

    We review the literature on the effects of Artificial Intelligence (AI) adoption and the ongoing regulatory efforts concerning this technology. Economic research encompasses growth, employment, productivity, and income inequality effects, while regulation covers market competition, data privacy, copyright, national security, ethics concerns, and financial stability.

  25. Sustainable Finance and ESG Importance: A Systematic Literature Review

    Over the last decade, sustainable finance has appeared to be capturing a high level of interest as a crucial pillar of sustainable development. The process of taking environmental, social, and governance (ESG) considerations into account when making investment decisions in the financial sector is expected to play a key role in this framework, and although it has attracted the attention of many ...

  26. Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks

    The first element we discuss is a review of research (literature reviews), which highlights the need for a specific research question, study problem, or topic of investigation. Literature reviews situate the relevance of the study within a topic and a field.